
Cloud	PARTE
Elastic	Complex	Event	Processing

based	on	Mobile	Actors
J.	Swalens,	T.	Renaux,	L.	Hoste,	S.	Marr,	W.	De	Meuter

Software	Languages	Lab
AGERE	Workshop,	2013-10-27

2

Use	Case

Traffic
Management

©Filip Bogdan
http://photo.net/photodb/photo?photo_id=5953570

Traffic	Management	at	City	Scale?
©Jupiter	Systems,	

Beijing	Traffic
Management	Bureau

Source:	City-Scale	Traffic	Estimation	from	a	Roving	Sensor	Network,	Javed Aslam,	Sejoon Lim,	Xinghao Pan,	and	Daniela	Rus.	Proceedings	of	the	10th	ACM	Conference	on	Embedded	Network	Sensor	Systems.	ACM,	(2012)

Singapore:	GPS	coord.	of	16000	taxis	=	200	coord./sec	=	12KB/sec

4
©Jupiter	Systems,	Beijing	Traffic	Management	Bureau

Personal	Onboard	Units Pedestrian	Sensing

Vehicle	Sensing

Challenges:
Large	Varity	of	Input	Sources

Challenges:
Combining	the	Data

5

int gru_tapping(struct grail *ge, const struct utouch_frame *frame) {
struct gesture_recognizer *gru = ge->gru;
struct tapping_model *state = &gru->tapping;
struct move_model *move = &gru->move;
state->tap = 0;
if (frame->num_active && !frame->prev->num_active) {

state->mintouch = 0;
state->maxtouch = 0;

}
if (move->ntouch > state->maxtouch) {

if (state->active) {
gin_gid_discard(ge, state->gid);
state->active = 0;

}
state->start = move->time;
state->maxtouch = move->ntouch;
set_props(ge->gin, state, move, frame);
if (state->maxtouch <= 5) {

int type = GRAIL_TYPE_TAP1 + state->maxtouch - 1;
state->gid = gin_gid_begin(ge, type, PRIO_TAP, frame);
state->active = 1;

}
return 0;

}
if (!state->active) {

state->mintouch = move->ntouch;
state->maxtouch = move->ntouch;
return 0;

}
if (move->ntouch <= state->mintouch) {

int x = state->prop[GRAIL_PROP_TAP_X];
int y = state->prop[GRAIL_PROP_TAP_Y];
int t = move->time - state->start;
if (t > move->fm[FM_X].bar_ms) {

gin_gid_discard(ge, state->gid);
state->mintouch = move->ntouch;
state->maxtouch = move->ntouch;
state->active = 0;
return 0;

}
state->tap = state->maxtouch;
state->prop[GRAIL_PROP_TAP_DT] = t;
gin_gid_event(ge, state->gid, x, y, state->maxtouch,

state->prop, state->nprop, 1);
state->mintouch = move->ntouch;
state->maxtouch = move->ntouch;

Imperative Declarative

(defrule detectTap
(Press (x ?x)

(y ?y)
(finger "index")
(timestamp ?t1))

(Release (x ?x)
(y ?y)
(finger "index")
(timestamp ?t2))

(test (< ?t1 ?t2))
=>
(tapDetected ?x ?y)))

a	simple	tap

Challenges:
Combining	the	Data

6

(defrule StolenCarInTraffic
(StolenCar (plate ?pl))
(CarInTraffic (plate ?pl) (camera ?c))
(Camera (id ?c) (highway ?hw)

(direction ?d) (position ?p))
=>
(printout "Sloten car " ?pl

" seen on highway " ?hw
" at " ?p
" in direction " ?d))

(defrule CarTooFast
(CarInTraffic (camera ?c1)
(plate ?pl) (time ?t1))

(CarInTraffic (camera ?c2)
(plate ?pl) (time ?t2))

(test (> ?t2 ?t1))
(Camera (id ?c1) (highway ?hw)
(direction ?d) (position ?p1))

(Camera (id ?c2) (highway ?hw)
(direction ?d) (position ?p2))

(test (> (speed ?t1 ?p1 ?t2 ?p2)
speed-limit))

=>
(printout "Car too fast: "

?pl " at "
(speed ?t1 ?p1 ?t2 ?p2) " km/h."))

Challenges:
Combining	the	Data

7

(defrule StationaryCar
(CarInTraffic (camera ?c)
(plate ?pl) (time ?t1))

(CarInTraffic (camera ?c)
(plate ?pl) (time ?t2))

(test (> (- ?t2 ?t1) 30))
(Camera (id ?c) (highway ?hw)
(direction ?d) (position ?p))

=>
(assert (StationaryCar (camera ?c)

(plate ?pl) (time ?t1))))

(defrule StationaryCars
(Camera (id ?c) (highway ?hw)
(direction ?d) (position ?p))

(StationaryCar (camera ?c)
(plate ?pl1) (time ?t1))

(StationaryCar (camera ?c)
(plate ?pl2) (time ?t2))

(StationaryCar (camera ?c)
(plate ?pl3) (time ?t3))

(test (!= ?pl1 ?pl2 ?pl3))
(test (< 0 (- ?t2 ?t1) 1))
(test (< 0 (- ?t3 ?t2) 1))

=>
(assert (StationaryCars

(camera ?c) (time ?t1))))

How	to	approach	such	scenarios?

• Declarative	rules!
• Online	processing	of	real-time	events!

8

ElasticityLoad	balancing1	set	of	rules
1	set	of	facts

(transparent	distribution)

Our	Approach

9

Parallel	+	Soft	Real-Time Distributed	for	“Big	Data”

• Declarative	rules
• Mobile	actors
• Central	managing	interface
• Simple	heuristics	for	load	balancing

PARTE:	A	Parallel,	Actor-based	Rete	Engine

10
[1]	Rete:	A	Fast	Algorithm	for	the	Many	Patterns/Many	Objects	Match	Problem,	Charles	L.	Forgy.	Artif.	Intell.	19(1):17–37	(1982)
[2]	Parallel	Gesture	Recognition	with	Soft	Real-Time	Guarantees,	T.	Renaux,	L.	Hoste,	S.	Marr,	and	W.	De	Meuter.	AGERE’12,	35–46.

(defrule StationaryCar
(Car (cam ?c) (plate ?plt) (time ?t1))
(Car (cam ?c) (plate ?plt) (time ?t2))
(test (> (- ?t2 ?t1) 30))
(Cam (id ?c) (position ?p))

=>
(assert (StationaryCar (pos ?p)))

Events

e=Car e=Cam

Unification
1.cam=2.cam
1.plate=2.plate

Type	Tests

Test
time-diff	>	30

Unification
cam=id

assert

• Each	node	an	actor
• Unification	memory	
intensive

• Tests	computationally	
intensive

1

3

4

2

Cloud	PARTE
From	Parallel	to	Distributed

11

Ev
en

ts

master

Ap
p

• Transparent	Distribution

(defrule StationaryCar
(Car (cam ?c) (plate ?plt) (time

?t1))
(Car (cam ?c) (plate ?plt) (time

?t2))
(test (> (- ?t2 ?t1) 30))
(Cam (id ?c) (position ?p))

=>
(assert (StationaryCar (pos ?p)))

1

3

4

2

worker

Cloud	PARTE	builds	on	Theron (C++	actor	library,	http://www.theron-library.com/)

Cloud	PARTE
From	Parallel	to	Distributed

12

Ev
en

ts

master

Ap
p

• Automatic	Load	Balancing
• Mobile	actors
• Heuristic
– Length	of	message	queue

(defrule StationaryCar
(Car (cam ?c) (plate ?plt) (time

?t1))
(Car (cam ?c) (plate ?plt) (time

?t2))
(test (> (- ?t2 ?t1) 30))
(Cam (id ?c) (position ?p))

=>
(assert (StationaryCar (pos ?p)))

1

3

4

2

worker

Cloud	PARTE	builds	on	Theron (C++	actor	library,	http://www.theron-library.com/)

Load	
Balancer

Cloud	PARTE
From	Parallel	to	Distributed

13

Ev
en

ts

master

Ap
p

1

3

4

2

worker

Load	
Balancer

• Elasticity
– Adding/removing	
of	workers

• Coordination	
required	
(currently)

Cloud	PARTE
From	Parallel	to	Distributed

14

• Elasticity
– Adding/removing	
of	workers

• Coordination	
required	
(currently)

Ev
en

ts

master

Ap
p

1

3

4

2

worker

Load	
Balancer

EVALUATION
Performance

1/28/18 15

Microbenchmarks

16Performance	Evaluation:	Comparison	with	non-distributed	PARTE	

Cloud	PARTE	Scalability PARTE	vs.	
CloudPARTE

Slow
down

101 simple	tests 18x
501	simple	tests 29x
101	complex	tests 5x
…	with	variables 5x
10x101	simple	tests 60x
10x8	heavy	tests 2x
16	heavy	tests 4x
32	heavy	tests 4x
64	heavy	tests 4x
128	heavy	tests 3x
Joining	tree 6x
Search 2x

16	heavy	tests

...

16 heavy tests

. . .

15 times in parallel

... ...

...
...

14
 jo
in
s

(o
f 1
5
fa
ct
s)

(b)(a) (c)

Single	machine

Performance:	Traffic	Scenario

17

1 3 5 7 9 11 13 15 17 192 4 6 8 10 12 14 16 18 20Event type:
Phase 1:

Phase 2:

Phase 3:

Phase 4:

Phase 5:

Phase 6:

Phase 7:

Phase 8:

Phase 9:

Phase 10:

Simulating	events	from	variety	of	sources

18

11%	speedup 17%	speedup

2	machines
Static	Actor	Distribution

2	machines
Static	Actor	Distribution	+
Dynamic	Load	Balancing

3	machines
Static	Actor	Distribution	+
Dynamic	Load	Balancing	+

Empty	Machine

CONCLUSION

19

20Cloud	PARTE:	Elastic	Complex	Event	Processing	based	on	Mobile	Actors

Traffic	Management

Load	balancing1	set	of	rules
1	set	of	facts

(transparent	distribution)

Elasticity

