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Q: Why are there so many
programming languages?

Different tools for different jobs

strict « flexible

; ' ﬁ general purpose <> domain specific

fast programs < fast development

|i UBER




Q: Why create a new
programming language?

Research technique "
Small language with features we want to study u’

Can later be added to existing programming languages



Multi-core processors

Moore’s law:
# transistors on chip doubles every two years
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Sequential program

' Processor
Graphlcsi'

do
do
do
do

this;
that;
that;
more;

| Controller

including
Display;
DMl and
Misc. /0 =




Program with concurrency

do this; do that; do that; do more;

¢

A Controller

including
Display;
DMl and
Misc. /0 =




Concurrency is difficult
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def transfer(a, b, amount):
a a - amount
b b + amount
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@

Concurrency is difficult

- So a
. . e =
A,

diederik = 280 yannick = 450 nico =

diederik = 280
yannick = 420

€20

€50
e————————————

nico = 450
yannick = 450

race condition

450
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Concurrency is nhecessary but difficult

Concurrency bugs are frequent,
difficult to reproduce, and difficult to debug

|

Concurrency models:
set of programming language constructs
that
but with restrictions to prevent bugs

Zhou, Neamtiu, and Gupta (2015). Predicting Concurrency Bugs: How Many, What Kind and Where Are They? (EASE’15)
Godefroid and Nagappan (2008). Concurrency at Microsoft — An Exploratory Survey

21



There are many different
concurrency models

/\

shared memory message passing

ForkAoin locks @mmonica’ring Sequential Processes
futures promises

Nested Pata Parallelism fhreads w’rors active objects
dataflow | (Software Transactional Memo?) MPI

Concurrent Revisions worlds
speculative parallelism

transactional events

Van Roy, Haridi (2004). Concepts, Techniques, and Models of Computer Programming (The MIT Press)



There are many different
concurrency models

/\

shared memory message passing

oin |00k$ @mmonica’ring Sequential Processes
futures | promises

ested Pata Parallelism fhreads active objects

dataflow /Sof’rware Transactional Memor MPI
Concurrent Revisions —WoP Pansactional events
speculative parallellsm OPGMMP T tonal event

Van Roy, Haridi (2004). Concepts, Techniques, and Models of Computer Programming (The MIT Press)
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Futures

(def thumbnaill (resize-image “1l.7jpg”))
(def thumbnail2 (resize-image “2.7jpg”))
(show thumbnaill thumbnail2)

24



Futures

(def thumbnaill (fork (resize-image “1l.73pg”)))
(def thumbnail2 (fork (resize-image “2.73pg”)))
(show (join thumbnaill) (join thumbnail2))

GGuarantee:

determinacy

25



Transactions

(def diederik (ref 300))
(def vannick (ref 400))
(def (ref 500))
(fork

(atomic

(ref-set diederik (- (deref diederik) 20))

(ref-set yannick + (deref yannick) 20))))
(fork

(atomic
(ref-set
(ref-set yannick

—_

(deref ) 50))
(deref vannick) 50))))

+

GGuarantees:

)

Iso | isolation (e.qg. serializability, snapshot isolation)

—
)

Pro| progress (e.g. deadlock freedom)

—

26



Actors

(def airline-behavior
(behavior | ]
[orig dest n]
(let [flight (search-flight flights orig dest)
flights' (reserve flights flight)]
(become airline-behavior flights'))))

(def air-canada
(spawn airline-behavior

(send air-canada "LHR" "YVR" 2)

Guarantees: ——
PR ehavior
ITP ] isolated turn principle

DLE| deadlock freedom

=~




Deterministic

Summary

Transactions
Shared memory

Actors

Message passing

(fork e)
(join f)

Determinacy

(atomic e)
(ref v)
(deref r)
(ref-set r v)

)

Iso | Isolation

—
)

Pro | Progress

—

(behavior [x] [x] e)
(spawn b v)

(send a v)

(become b v)

ITP |Isolated turn principle

——

DLF|Deadlock freedom

Formalization of three separate models = Chapter 2

28



Different concurrency models
target different use cases
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Observation 1: programmers combine
concurrency models

Actors

15 Scala programs with actors:

Threads ' '
FutureSBlueEyes - 12/15 (80%) combine with
GeoTrellis Diffa  BigBlueButton another model
Kevoree CiMTool
SignalCollect Scalatron ENSIME

+ 6/15 (40%) say they circumvent
it where itis “not a good fit”

Spark
Spray Socko

Evactor Gatling
ThingML

Tasharofi, Dinges, and Johnson (2013). Why Do Scala Developers Mix the Actor Model with Other Concurrency Models? (ECOOP’13)

30



Observation 2: programming languages
support many concurrency models

Clojure Scala Java Haskell C++

Deterministic models
Futures

Promises

Fork/Join

Parallel collections
Dataflow

Shared-memory models
Threads

Locks

Atomic variables
Transactional memory

Message-passing models
Actors

Channels

Agents

built in
e library

# supported models

10 38 7 5 5

\>Clojure has 6 concurrency models built in
(+ 4 through JVM)

31



Developers combine concurrency models.

Programming languages allow this.

How does this affect their guarantees?

32



Naive combinations lead to problems

Case study of Clojure

(swap
(send

! (fn [v] (send
(fn [v] (send

(dosync
(future

(go

(send
(send
(send
(send
(send
(send

(fn
(fn
(fn
(fn
(fn
(fn

[V]
[V]
[V]
[V]
[V]
[V]

w)))
w)))

(send ..))

(send ..))

(send ..))
(swap! ..))
(send ..))
(dosync ..))

(future ..))
(promise ..))

(go ..))

<

outer

outer

outer

<

inner
Races Atom Agent STM Future  Promise Channel1
[ Atom’s swap! X X X X X X
Agent’s action Ve v v v v v
STM's dosync X v Y X X X
Future Y v v 4 v
4 4 4 4 4
inner
Deadlocks | Atom Agent ST™M ture  Promise Channel1
[ Atom’s swap! v 4 4 4 4 X
Agent’s action Ve v X X
STM's dosync v v v X
Future| v X v X
s go v X v v v X
inner
Livelocks Atom Agent ST™M Future  Promise Channel1
[ Atom’s swap! X 4 v 4 4 4
Agent’s action Ve v v v v v
STM'’s dosync v v v v v v
Future v v e v 4 4
CSP's go v v v 4 4 4

33



Naive combinations lead to problems

3 common problems:
e SpUrious retries
—%

- unexpected blocking
=

- unexpected retries
= livelocks

Caused by operations that:

. retry
 block

outer

Atom

h ]
Promise Channel

outer

outer

Races Agent STM Future

[ Atom’s swap! X X X X X X

Agent’s action v v v Y v v

STM's dosync X Y Y X X X

Future v v e v 4 4

CSP’s go 4 4 4 4 4 4
Deadlocks r Atom Agent ST™M Future  Promise Channel‘

[ Atom’s swap! v v v v X

Agent’s action Ve v v X X

STM’s dosync v v v v X

Future v X e X v X

CSP’s go v X v v v X
Livelocks Atom Agent ST™M Future  Promise Channel‘

[ Atom’s swap! X v v v v v

Agent’s action Ve v v v v v

STM'’s dosync v v v v v v

Future v v e v 4 4

CSP’s go 4 4 4 4 4 4

34



Naive combinations lead to problems

We need to study

each combination

and how it affects
the guarantees

outer

outer

outer

inner
Races r Atom Agent STM Future  Promise Channel‘
[ Atom’s swap! X X X X X X
Agent’s action Ve v v v v v
STM's dosync X Y Y X X X
Future v v e v 4 4
CSP's go v v v 4 4 4
inner
Deadlocks r Atom Agent ST™M Future  Promise Channel‘
[ Atom’s swap! v 4 4 4 4 X
Agent’s action Ve Ve v v X X
STM’s dosync v v v v v X
Future v X v X v X
CSP’s go v X v v v X
inner
Livelocks Atom Agent ST™M Future  Promise Channel‘
[ Atom’s swap! X 4 v 4 4 4
Agent’s action Ve v v v v v
STM'’s dosync v v v v v v
Future v v e v 4 4
CSP's go v v v 4 4 4
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We studied the combinations of
futures, transactions, and actors

Transaction Future

Actor

Future

(fork

(fork ..)

(join ..))

Nested futures

(atomic

(fork ..)

(join ..))

Parallelism

1In transaction

(behavior [] []
(fork ..)

(join ..))

Parallelism in actor

Transaction Actor
(fork (fork
(atomic ..)) (spawn ..)
(send ..)
(become ..))
Communication
Parallel transactions in future
(atomic (atomic
(atomic ..) (spawn ..)
(ref ..) (send ..)
(deref ..) (become ..))
(ref-set ..))

Communication
Nested transactions 1n transaction

(behavior [] [] (behavior [] []
(atomic ..)) (spawn ..)
(send ..)
(become ..))

Shared memory
in actor Actors

36



Goals

Unified model of futures, transactions, and actors that:

a Separate models: backward compatibility

9 Combinations: maintain guarantees of all models
T impossible: define a less restrictive guarantee

37



“Naive” combinations

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
w (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=
= | | Det D¢ D¢
5 Det Dt

[ Iso ] [Pro]

176 oi]

Parallelism in trans-

Nested transactions

Communication in

)

7P

~—

[DLE]

76 L]

{-’S‘) action (Sections 4.2-4.4) (Section 3.3.3) transaction (Chapter 5)
2] 2| & ® |
| & | e 8) DL
Parallelism in actor Shared memory Actors
g (Section 6.1) in actor (Chapter 5) (Section 3.3.3)
3 | (Det (50 ) (Pro) (1TP)[DLE
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Trivial combinations

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
W (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=
= Det D¢ DE
E Dét Dét

[Iso][Pro]

176 oi]

Parallelism in trans-

Nested transactions

Communication in

)

178

—

DL

76 L]

-g action (Sections 4.2-4.4) (Section 3.3.3) transaction (Chapter 5)
2| § o® WEe) |
£ | 8 ) oL
Parallelism in actor Shared memory Actors
. (Section 6.1) in actor (Chapter 5) (Section 3.3.3)
3 | Det | Iso | Pro | [ITP|(DLE]
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Transactions + Futures

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
w (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=
=] Det D¢ D

[ Iso ] [Pro]

6oL

Parallelism in trans-

Nested transactions

Communication in

)
E\
—

IDLF

76 L]

g action (Sections 4.2-4.4) (Section 3.3.3) transaction (Chapter 5)
S W) | )]
| & | EE) ) oL
Parallelism in actor Shared memory Actors
g (Section 6.1) in actor (Chapter 5) (Section 3.3.3)
§ Det | Iso || Pro | [ITP|(DLE

40



Motivation: Parallelism in Transaction

Application Transaction  Average time in

~ Labyrinth

Bayes e —
Yada
* Vv |
. parallelism within transaction
Kmeans-high
SSCA2
Labyrinth original: Labyrinth optimized:
(atomic
(atomic (parallel-bfs ..))

(breadth-first-search ..)) ———> \\-——"_\\

vV
(defn parallel-bfs [..]
(for [..]
(fork ..)))

41
Minh, Chung, Kozyrakis, Olukotun (2008). STAMP: Stanford Transactional Applications for Multi-Processing (11ISWC’08)



Problems when creating
future in transaction

Impure Ianguages (e.g. Clojure, ScalaSTM)

Tasks in transaction do not
share context

= no access to transactional state

= isolation broken

Pure languages (Haskell)
Tasks in transaction prohibited

= isolation guaranteed but

parallelism limited

(atomic

(fork
(ri"gét.")))

(atomic
(fork

s
( set ..))))

atomical
do { £

4

42



Transactional Futures

(atomic
(ref-set ... 1)

43



fork creates isolated task

(atomic
(ref-set ... 1)
(fork

(ref-set .. 2))
(ref-set ... 2)

Fach transactional task contains:

snapshot: transactional state on creation
|| docal storedlocal modifications

44



join merges changes

(atomic

(join child))

merge local store of child into parent

Conflict resolution function: (ref 0 resolve)

45



All tasks commit atomically
= isolation and progress maintained

(atomic

(join child))

All tasks must be joined before commit

)

= isolation maintained | Iso

——

)

progress maintained | Pro

——




pé)(itp] |ntratransaction determinacy

Transactions can commit in any order

- inevitable

But: determinacy within each transaction
= intratransaction determinacy

And isolation between transactions

47



Transactions + Actors

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
w (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=
=] Det D¢ D
5 Dt Det

[Iso ][Pro]

6oL

Parallelism in trans-

Nested transactions

Communication in

)
E\
—

IDLF

76 L]

g action (Sections 4.2-4.4) (Section 3.3.3) transaction (Chapter 5)
S W) |
| & | EEm) ) o]
Parallelism in actor Shared memory Actors
g (Section 6.1) in actor (Chapter 5) (Section 3.3.3)
§ Det | Iso || Pro | [ITP|(DLE
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Motivation: (1) safe shared information

between actors

Impure actor languages (eg. Scala)

10/15 projects introduce
shared memory

= ITP broken

= races & deadlocks possible

Pure actor languages (e g. Erlang)
Patterns: replication/delegation

= ITP guaranteed but
safety up to the developer

Actors

Threads

BlueEyes

GeoTrellis Diffa
Kevoree CIMTool

SignalCollect Scalatron ENSIME

Futures

BigBlueButton

VVVVVV

°[e
CCD:J {G\Hﬂ

49



Motivation: (2) communication between
transactions

“Vacation” processes customers in parallel

O
O

(def customer-behavior
(behavior [1d] [c]
(atomic

(reserve-flight
(reserve-flight
(reserve-room
(reserve-car
(ref-set c

2228

50
Minh, Chung, Kozyrakis, Olukotun (2008). STAMP: Stanford Transactional Applications for Multi-Processing (11ISWC’08)



Motivation: (2) communication between
transactions

but more fine-grained parallelism is possible

C=

“ 22
(def customer-behavior
(behavior [i1d] [c]
(atomic
(send (rand workers) :flight
(send (rand workers) :flight
(send (rand workers) :room
(send (rand workers) :car
(

ref-set c

= isolation broken



Transactional Actors

Make side effects on actors part of transaction

(atomic

(def airline-beh separate from transaction,

(bel;é;lVlor [£lights] no side-effect

(spawn airline-beh flights) delay side effect

. . . . ° . . . m
(become airline-beh flights)  until commit (pessimistic)
(send :process-customer sent immediately, but
(deref c))) rolled back on abort -~

(optimistic)

52



(behavior [] [msg]

(atomic
(send b :msg)

w))

Sending a message
In a transaction

>»(behavior [] [msg]
»

wait here until t1 commits

Message depends on the transaction

Receiving turn is tentative:

- Side effects (spawn, become) delayed

- Sends get dependency

- At the end, wait for dependency to commit

= isolation maintained | Iso
progress maintained | Pro

)

——
)

———

53



PP |>{LLRE Low-level Race Freedom

Shared memory = ITP broken

But: Low-level Race Freedom [LLRF
— shared memory is isolated at level of transactions

— private memory of actors is isolated at level of turns

54



Actors + Futures

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
W (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=
= Det - D
E Dét Dét

[ Iso ] [Pro]

176

Parallelism in trans-

Nested transactions

Communication in

)

178

~—

DL

76 L]

-g action (Sections 4.2-4.4) (Section 3.3.3) transaction (Chapter 5)
;| § | pE w0
£ (18 1) oL
Parallelism in actor Shared memory Actors
. (Section 6.1) in actor (Chapter 5) (Section 3.3.3)
3 | Det [ Iso |[ Pro] [ITP|[DLE]
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Chocola:
c’'omposable concurrency language

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
w (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=
=] Det D¢ D

[Iso][Pro]

[ITP|(DLE

outer
Transaction

Parallelism in trans-
action (Sections 4.2-4.4)

Déi)-{i1D)
[ Iso J[ Pro]

Nested transactions
(Section 3.3.3)

[Iso][Pro]

Communication in
transaction (Chapter 5)

[ Iso J[ Pro ]
76 - LR B

Actor

H
bk

Parallelism in actor
(Section 6.1)

ITP

)
—

DL

Shared memory
in actor (Chapter 5)

[Iso][Pro]

176 - LR B

Actors
(Section 3.3.3)

ITP || DLE]
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Implementation

Extension of Clojure
» Futures & Transactions: built into Clojure
. Actors: simple implementation
- Transactional Futures
} added

« Transactional Actors

= Chapter 8
= http://soft.vub.ac.be/~jswalens/chocola

57


http://soft.vub.ac.be/~jswalens/chocola

Formalization of Operational Semantics
“PureChocola”

Uniform formalization of three separate models & Chapter 2

Program state P (T, 7.0)

Program state = (A,
Task task € Task = (fen’) & b (A )
. : : Actors A C Actor
Program state p = (T) Transactions 7 : TransactionNumber — Transaction —_—
- Inboxes : Address — Message
Tasks T C Task snapshot, local store o0,0,4 : TVar — Value )
Task € Task = ) Transaction Actor Actor == (a. e’ beh)
ask_gaspe Task = {f. e i € Behavior:= (b, )

Transaction id
Transaction state

msg € Message :: (Gfrom: Gto, V)

Program state
Actors
Tasks
Inboxes
sactions

Transaction&lh
Ac ct r 1= (. froor PEN. NG)
Ta € Task = (f a e F Fj eff ctx’)
Transaction tx € Transaction = (o )
Spawned and joined futures F, F; C Future
Effects on actors eff = (A& beh")
Transactional context  ctx = (n, 0,0, effy)
Message  msg € Message = (dfrom. ro: V. Ny )
As before:
Behavior  beh € Behavior == (b.7)
Snapshot, local store 7,4 : TVar — Value
Transaction id n € TransactionNumber
Transaction state o = | VX

Formalization of Chocola @ Chapter 7 s



Executable formal semantics with PLT Redex

(((f_o

- (((f0
(let ] e
¢ (E;:a et o (et ((r.0 r_new) U e (o (e (10
(Fork o (Fork (((f_0 (let ((f_0 f_new) = = (((fo
(atomic (I::;m (atomic (let ({10 f_new) ({71 " et (({?:,rk (17: E;;Ll\ ;’gi):jom £0)) fer (0 fnea))
(let ((x tet (f1 or ; - - +
K ok (et ((x et (0 e (Fork (atonic (atomic (fneat (join f_new)
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ork (fork - = - r_new (atomic - (r_new 2) -
(fork i (f_new 2) - (r_new 2
(ref-set (:;f—set (ref-set “ (join £_1)))) (g—::'”w i;) ((Fnew 2)) ~ (+ (deref r_new) 4))))) (let ((x :r‘"ew by (r_new 1) (r. e 1:
e re e (atomic (rnew 1 (rnew 1) (o o) T (fork r_new 0)) (rnew 0))) (Fnew 0)))
- Y - X frnew 1) join y) (ref-set (((f0 (+ 2 (join f_newl) =
(deref %mf {deref (let ((x (r_new 0))) - (deref r_new))))) r_new (f_new1 e
r_0) oy r_new) (fork (o (f_new 2)) (+ (deref r_new) 3)))) (atomic 5
3)))) I 7)) (ref-set o e ((r_new 2) (r_new 1) (r_new 0))) (y (let ((x
()(,f ) v ({ (r:nw ef ((?;rk (((f_0 — (fork (fork
orl fork g (let ((f_1 f_newl. joi o1 (ref-set -~
(ref-set tork (ref-set {deref r_ne) (stamic. /s G newl)) (et () /o{v:;_ﬁeﬁ (oin f_new) (Join f_newi))) rnew - (E;;,ﬁ
o ro roned " et ok N Hgi: ;-m) (join f_new) A (atomic " (Jo(i; (L)ieref r_new) 4))))) [ ( (+ (deref r_new) 3))))
‘ X jot x y
(deref tceref (deref (fork p (ref-set (fnew (pain TredD)) S e (join y) (fork
4:7?:) r.0) r_new) (:e’f‘;et &\ :':new (atomic (atomic (ref-set : (deref r_new))))) (ref-set
3 e i ¥ et ((x atonic " f_new 2)) r_new
(do (join x) o (do ( - (deref et (X 2 ((r_new 2
(join y) (do E;gi: ;: (;zi: ;; (deref r_new) r_new) (rl::;_set ((ﬂ"k ( {+ (deref r_new) 3)))) e (e (e O (:deref r_new)
(deref 2)) 3)) ref-set H -
NN (deref e (do (join x) ( r_new r_new (fork _am)
+ - - (+ eI (Goin y) trork (* (+ (deref r_new) 3)))) (ref-set {do {Join x)
(deref g joi
(join £.0) “oin 1.0 (oin 1.0) (deref r_new)))))) (ref-set {doref rned) 7 r_new (ot )
Goin 107 Goin 1)) (join 1)) {(rnew 0)) r_new v (ork oy aycrer e 40 (foew2)
o) (o ({r_new 0))) “+ (fork (ref-set (o o ((rnew 2) (r_new 1) (_new 0)))
- (deref . _hew — - —
T new) (ref-set ( (+ (deref r_new) 9)))) p (deref r_new)))))
& s do (join x) o (fnew
o tot i;” (Ideref ren (oin y) Tet0 (atomic
i x let
(join y) ) P new(deref r_new))))) (le (()((fork (((fo
hsie o (ot T X (+ (join f_new) (join f_new)))
(at (ref.
r_ne)))))) |—fork (Goin y) atomic ref-set (f_newl 4)
(+ ) (let ((x r_new Pl
(join f_new) (f_new - ({ork . (+ (deref r_new) 1)))) Yo (atomic
(join f_1)))) (atomic ref-set y (let ((x
(fnew (let ((x r_new (fork (fork
(atomic Lork (+ (deref r_new) 1)))) (ref-set (ref-set
(let ((x (ref-set ({ :,nfw rnew
(fork fork + (deref r_new) 2))))) "
(ref-set (r:new (ref-set (do (join x) " (+ (deref r_new) 1))))
r_new r_new o (join y) (fork
s ;??ﬁf r_new) (+ (deref r_new) 2))))) ’o% (deref r_new)))))) (ref-set
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&y (::;l;im (deref r_new)))))) (((fe (do (m; Seref e 200
(rork r new \»,% ((r_new 0))) (Tet () (join y) > (((f0
ref-set ¥ % joi foi (deref r_new)))))) 2 (+
(+ © (+ (join f_new) (join f. 1] - g
v riew (deref r_new) (f_newt 4) oin f-reaD))) ((r_new 4) (r_new 3) (r_new 0))) © (join f_new) (((f0 (+ 6 (Join fnewD))) (7o rean] [(((ro10
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S?;Tf r_new) (do (join x) (atonic ) (:f_m iy (frew ) (frew 61)
(do (join x) (join y) (((f_0 (let ((x (E:_::ww g;) Tom (?:: g: ((r_new 6) | (neve)
(join y) (deref r_new)))))) (let ((f_1 f_newl)) (fork ! (o @ JO\H; (r_new 5) 7 (r_new 5)
ey ((r_new 0))) (o U Goin 1) Goin £200) (ref-set frpen g (rnew 4) (Fnew 4)
« ! _newl 4) r_new - - (r_new 3) (r_new 3)
r_new 0))) (I':ew, (  (deref r_new) 1)) E:_:z z;)) (r_new 0))) (r_new 0))) (r_new 0)))
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(et ((x (fork
(fork /V (ref-set
(ref-set 8 r_new Al
r_new (+ (deref r_new) 2))))) A
(+ (deref r_new) 1)))) (do (join x) (10
v (join y) oy (let ()
(fork (deref r_new)))))) "< (+
(ref-set ((r_new 4) (r_new 3) (r_new ©))) (join f_new)
|('_new ( (join f_new1))))
> (((fo f_newl 4)
(deref r_new) (let ((f_1f (f_new 6))
e % ot (1 fne)) ((r_new 6)
(do :1_0}n x) (join f_new) ! (r_new 5)
join ) (Goin 1)) * (r_new 4)
(deref r_new)))))) (f_newl 4) (rnew 3)
((r_new 4) (r_new 3) (r_new 0))) (f_new 6)) (rnew @)
((r_new 6)
(rnew 5)
(r_new 4)
(r_new 3)
(rnew 0)))

== https://github.com/jswalens/chocola-redex
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Evaluation approach

(1) selection of benchmarks

Application Transaction  Average time in

" Labyrinth
Bayes
Yada

. Vacation-high
enome
Intruder

Kmeans-high
SSCA2

(2 parallelization
Bayes

(parallel loo
%\p p] Vacation2
Dependencies be-

replace with standar

. : d :
? Yes L h
fween lterations | Standard /)\parallel algorithm } abyrint

Yes -
algorithm? .
© F’ negative result] Yada

(3) evaluation criteria

performance: speed-up
developer effort: lines changed + qualitative assessment
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Summary of results

Speed-up Speed-up Lines of code

original Chocola added
Labyrinth 1.3 7 2.3 +11% }
3 cores
Bayes 28 7 35 +1

Vacation2 26 “~ 332 +89% 64 cores

Yada futures/actors not applicable

Better performance for little effort

= Chapter 8
= https://github.com/jswalens/{labyrinth,bayes,yada,vacation2}
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Contributions

- Systematic study of combinations of concurrency models
in Clojure [Swalens et al, 2014]

- Systematic study of combinations of futures, transactions,
and actors

« Transactional futures [Swalens et al, 2016]
e Transactional actors [Swalens et al. 2017]

« Unified framework — Chocola: [Swalens et al, 2018; accepted]
- Implementation
« Formal semantics
« Evaluation

Swalens, Marr, De Koster, Van Cutsem (2014). Towards Composable Concurrency Abstractions (PLACES'14)

Swalens, De Koster, De Meuter (2016). Transactional Tasks: Parallelism in Software Transactions (ECOOP’16)

Swalens, De Koster, De Meuter (2017). Transactional Actors: Communication in Transactions (SEPS'17)

Swalens, De Koster, De Meuter (2018). Chocola: Integrating Futures, Actors, and Transactions (accepted for AGERE'18)
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Future work

- Formal proofs of guarantees
» Other concurrency models
. Applicability & more benchmarks

- Comparison of implementation techniques
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Conclusion

Concurrency models are combined

Futures

Diffa
Kevore

GeoTrellis

SignalCollect
Spark

Evactor

Actors

BlueEyes

Scalatron

Spray

ThingML

Threads

BigBlueButton
e ClMTool
ENSIME

Socko

Gatling

Naive combinations violate guarantees
We S t u d i e d t h e C O m b i n a t i O n S Of e Nestl:elzltlflljfures Parairetalllz::;zi:criions Comrilcltnoiiation

. v (Section 3.3.3) (Section 4.1) in future (Section 6.1)
futures, transactions, and actors

Parallelism in trans-
action (Sections 4.2-4.4)

(5)-mD)

— Transactional Futures

Transaction

Nested transactions
(Section 3.3.3)

Communication in
transaction (Chapter 5)

(226} L B

— Transactional Actors
S Chocola

Parallelism in actor
(Section 6.1)

Actor

Shared memory
in actor (Chapter 5)

(176 - L) (B8

Actors
(Section 3.3.3)
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