
Cloud PARTE: Elastic Complex Event
Processing based on Mobile Actors

Janwillem Swalens Thierry Renaux Lode Hoste Stefan Marr Wolfgang De Meuter
Software Languages Lab

Vrije Universiteit Brussel, Belgium
{jswalens,trenaux,lhoste,smarr,wdmeuter}@vub.ac.be

Abstract
Traffic monitoring or crowd management systems produce
large amounts of data in the form of events that need to
be processed to detect relevant incidents. Rule-based pattern
recognition is a promising approach for these applications,
however, increasing amounts of data as well as large and
complex rule sets demand for more and more processing
power and memory. In order to scale such applications, a
rule-based pattern detection system needs to be distributable
over multiple machines. Today’s approaches are however
focused on static distribution of rules or do not support
reasoning over the full set of events.

We propose Cloud PARTE, a complex event detection
system that implements the Rete algorithm on top of mo-
bile actors. These actors can migrate between machines to
respond to changes in the work load distribution. Cloud
PARTE is an extension of PARTE and offers the first rule
engine specifically tailored for continuous complex event de-
tection that is able to benefit from elastic systems as provided
by cloud computing platforms. It supports fully automatic
load balancing and supports online rules with access to the
entire event pool.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent programming; D.3.4 [Program-
ming Techniques]: Processors; I.5.5 [Pattern Recognition]:
Implementation

General Terms Algorithms, Design, Performance

Keywords mobile actors, Rete, complex event processing,
online reasoning, load balancing

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Large-scale processing of complex events gains new rele-
vance with the big data movement and an increasing avail-
ability of real-time data, for instance for enterprise applica-
tions, or societal and security-related scenarios. Companies
want to leverage real-time big data for new products and im-
proved services [1], while traffic and crowd monitoring sys-
tems could be used to prevent traffic jams or guide rescue
services in emergency situations.

Such applications require flexible and maintainable event
processing systems that can be adapted easily for instance to
recognize new emergency scenarios or business cases. One
approach is to use machine learning techniques to analyze,
filter, and categorize events. However, these approaches are
often black boxes that do not give feedback on the reasons
for a certain classification [12, 13]. Moreover, most machine
learning techniques require training data, which is seldomly
available for exceptional and emergency situations.

For scenarios where training data is lacking or hard to
gather, query and rule-based complex event detection (CED)
systems are more suitable choices [11]. Furthermore, rule-
based systems have the advantage of providing software en-
gineering abstractions to express intent, avoiding cumber-
some and error-prone ad-hoc implementations, and allowing
expert programmers to intervene in the correlation of events
by explicitly encoding application logic. For instance, the
forming of a crowd can be detected based on simple rules
that correlate location and movement of people in public
places. Similarly, upcoming traffic jams can be detected with
rules that detect deviations from the typical speed of cars.

While rule-based systems are appealing, the applications
listed above need to process large amounts of data efficiently
in order to reach the responsiveness required for use cases
that are based on live feedback. One application that could
be broadly described as “crowd monitoring” is the real-
time analysis of a soccer game, as proposed by the ACM
DEBS 2013 Grand Challenge.1 While most participants of

1 The ACM DEBS 2013 Grand Challenge, DEBS, access date: August
15, 2013 http://www.orgs.ttu.edu/debs2013/index.php?goto=

cfchallengedetails

1 2013/10/23

http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails


this competition prototyped their systems with rule-based
complex event detection systems such as Esper,2 the final
systems used highly custom solutions, severely lacking soft-
ware engineering abstractions and maintainability, and with
strong limitations on the rules. Today’s rule-based systems
do not yet provide the necessary efficiency to handle such
use cases with the required performance.

In order to facilitate big data applications that are sup-
posed to provide live feedback, complex event detection en-
gines and pattern recognition systems need to be able to deal
with data sets that are larger than the main memory of a sin-
gle machine. As a first step, we propose a distributed rule-
based CED system called Cloud PARTE, which builds on
PARTE [17], a Rete-based CED system. To our knowledge,
Cloud PARTE is the first Rete-based CED system that pro-
vides the following characteristics:

Distributed, yet unified knowledge base. The Rete nodes
are automatically distributed over multiple machines con-
nected in a LAN, yet the semantics of having a single
unified Rete network are maintained.

Scalable. Performance degradation from an increasing amount
of work can be countered without programming effort, by
increasing the number of machines.

Elastic. The system adapts at run time to increases or de-
creases in the work load. New machines can be added
to or removed from a running program and the workers
cooperatively redistribute the work.

Dynamically load balanced. The system adapts at run time
to change in the distribution of the work load throughout
the ruleset. As different subrules become memory- or
computationally intensive, the allocation of processing
and storage resources is redistributed, across machine
boundaries.

2. Context and Requirements
2.1 Traffic Monitoring
One of the potential applications for big data complex event
processing is road traffic monitoring. Modern highways are
monitored for a wide variety of reasons. Use cases include
tracking specific cars for the collection of road tolls, moni-
toring the overall traffic flow to guide drivers to avoid traffic
jams, or the recognition of potentially dangerous situations
in order to alert rescue services.

While systems for these applications exist today, they are
usually not easily extensible and most of the applications
do not provide live feedback. One challenge is to combine
the data of various data sources and handle the resulting
amounts of data efficiently. Examples for data sources are

2 Esper, EsperTech Event Stream Intelligence, access date: August 15, 2013
http://esper.codehaus.org/

(defrule StationaryCar

(Car (camera ?c) (plate ?plt) (time ?t1))

(Car (camera ?c) (plate ?plt) (time ?t2))

(test (and (> (- ?t2 ?t1) (seconds 30)))

(< (- ?t2 ?t1) (seconds 60)))

(Camera (id ?c) (highway ?hw) (position ?p))

=>

(assert (StationaryCar (camera ?c)

(plate ?plt) (time ?t1)

(highway ?hw) (position ?p))))

Listing 1: Example rule to describe a stationary car.

sensors such as inductive loops,3 which are permanently em-
bedded into roads to count passing cars, or radar stations
used to determine the speed of specific cars. Together with
cameras, they can be used to record speed limit violations.
Cameras can further be used in combination with on-board
units to determine the exact toll for cars as for instance in
Germany.4 Assuming that these data sources can be com-
bined for large and traffic intensive regions or countries in
order to facilitate new traffic monitoring applications, the re-
sulting amounts of data outgrows what a single server sys-
tem can handle.

In order to enable a wide range of such applications,
rule-based approaches are promising. Forgy [6] proposed the
Rete algorithm as an efficient implementation technique. Re-
naux et al. [17] demonstrated how such an approach could
be used for efficient implementation on multicore systems.
Imagining an application that uses various input sources to
detect traffic jams and accidents, a simple rule can be speci-
fied as in the example given in Listing 1. The rule describes
how to detect cars that are not moving. The example assumes
that the system receives events about cars that include an
identifier for the traffic camera recording the car, the license
plate information, as well as the time stamp of the event.
We assume that a car can be considered as stationary, if it
has been recorded at least twice by the same camera in a
30 to 60 seconds timespan. Furthermore, we assume that the
system has detailed information about the cameras and their
positions on a specific highway. Such information can then
be used to trigger a higher-level event StationaryCar that
can be further processed and used to investigate whether it
is an emergency situation or a traffic jam. Unlike existing
techniques measuring the flowrate of cars, declarative rules
allow reasoning over the causes, e. g., by observing abnor-
mal movement of cars.

Modeling complex traffic monitoring systems based on
such an approach requires efficient execution engines. The
scenario itself will result in a large amount of rules to de-

3 ZELT vehicle monitoring, Traffic Technology Ltd, access date:
August 15, 2013 http://www.traffictechnology.co.uk/

vehicle-monitoring/zelt-loop-detection
4 Toll Collect, A system for positioning, monitoring, and billing trucks
on German motorways, access date: August 15, 2013 http://www.

toll-collect.de/

2 2013/10/23

http://esper.codehaus.org/
http://www.traffictechnology.co.uk/vehicle-monitoring/zelt-loop-detection
http://www.traffictechnology.co.uk/vehicle-monitoring/zelt-loop-detection
http://www.toll-collect.de/
http://www.toll-collect.de/


scribe the scenarios that are to be detected, and even larger
amounts of events coming in from many sensors, at high
frequencies. Furthermore, these rules need to be applied to
continuous event streams to provide live feedback. Using the
Rete algorithm for the rule processing allows for efficient ex-
ecution, however, it has not widely been used for such large-
scale, online scenarios.

2.2 Requirements
In the previous section, we outlined traffic monitoring as an
example scenario in more detail, but the domain of com-
plex event detection has a much wider range of applications
where live feedback enables individuals and companies to
react better and faster to a changing environment. In general,
correlating various different data sources provides a much
richer context that can be leveraged [1]. These applications
have in common is that they follow the big data trend, i. e.,
they are based on the availability of large amounts of data
exceeding the capacities of a machine. This big data is then
mined for correlations and patterns.

For the scenarios we are interested in, data sources pro-
duce constant streams of events that need to be processed
online to enable live feedback. Rete engines such as Lana–
Match[2] enable the use of multiple systems for distributed
pattern matching, but they have significant drawbacks such
as high latencies, because all matches need to be committed
centrally using an transactional concurrency system. Typi-
cally, they partition a fact base in order to fit into the memory
of a single machine, and then allow parallel execution of the
matching process. This approach poses the severe restriction
on the supported rules that individual rules may not outgrow
the capabilities of a single system, since the granularity of
distribution is placed at the rule-level.

The main requirements for continuous complex event
processing with big data are as follows. First of all, such
a system needs to perform pattern matching online, while
the events are taking place. Next, it needs to provide sup-
port for rules that reason over the whole data set of events,
i. e., it needs a unified knowledge base that does not make
data distribution explicit and does not require any a priory
knowledge about how data is stored and processed. More-
over, such a system needs to scale: the use of additional ma-
chines needs to enable it to compensate for an increase in
incoming events. In addition to scalability, it needs to adapt
to changing work loads elastically: it should be possible to
add additional machines to handle increasing work loads at
runtime. Finally, it should dynamically balance load be-
tween machines: the system needs to be able to redistribute
data and computation dynamically to avoid overloading ma-
chines and to avoid performance bottlenecks. These require-
ments guide the design of Cloud PARTE, which is discussed
in the following section.

Car?

unify
?c
?plt test

unify
?c terminalCamera?

Figure 1: Rete network for the rule defined in Listing 1.

3. Cloud PARTE
Our system is an extension of PARTE, an actor-based, paral-
lel CED system by Renaux et al. [17]. The pattern detec-
tion in PARTE builds on the Rete algorithm proposed by
Forgy [6]. The Rete algorithm converts a list of rules, such
as the one in Listing 1, into a network of nodes, such as
shown in Figure 1. The left-hand side of each rule is con-
verted into a set of nodes that perform tests. Incoming events
flow through the network as tokens, which are filtered by the
nodes through which they pass. Nodes can perform tests on
one token, e. g., compare them to a constant, or on two to-
kens, e. g., test for a unification between two events. In case
of a complete match of the left-hand side of a rule, a token
will reach the terminal node which represents the right-hand
side of the matched rule.

Rete follows a state-saving approach to forward chaining,
making it highly efficient for stable fact bases. Since our
work is tailored to events, which are stable by design,5 the
Rete algorithm offers a good solution.

Renaux et al. [17] used the strong similarity between
a Rete network and a graph of actors communicating via
message passing in the design of PARTE by reifying all
Rete nodes as actors. In our work, known as Cloud PARTE,
we extended the previous system with the means to scale
up beyond the bounds of a single machine. Cloud PARTE
allows to distribute the detection of complex events over
multiple machines, dynamically balancing the load across
the available machines. To this effect, the most resource-
intensive parts—the actors—are made mobile such that they
can be moved around to balance resource usage.

3.1 Architecture
Cloud PARTE shares much of its architecture with its prede-
cessor. Unlike PARTE, which used a custom scheduler and a
custom implementation of the actor model to offer soft real-
time guarantees in a shared memory context, Cloud PARTE
is built on top of the Theron6 actor library.

Overview From a high level, Cloud PARTE processes
events coming from various input sources. A predefined rule
set is compiled into a Rete network where each node is repre-
sented by an actor to enable parallel execution. These nodes,

5 Events, after occurring, never change. They have to be stored immutably
while useful, and afterwards they expire.
6 Theron, a lightweight C++ concurrency library based on the Actor Model,
access date: August 15, 2013 http://www.theron-library.com

3 2013/10/23

http://www.theron-library.com


Event Sources Application Layer

GUI

Pub/Sub

Cloud PARTE

Traffic 
Cameras

Radar 
Stations

On-board 
Units

Car Counters
Rule Set

Events
(Knowledge 

Base)

Rete Inference Engine

Worker 1 Worker 2 Worker n...

Figure 2: High-level view on Cloud PARTE. Input events
from a variety of event sources are processed based on a rule
set that is compiled into a Rete network. The nodes of the
Rete network are actors which are distributed over a number
of worker machines. When a rule matches an event pattern,
a higher-level event is generated that can be processed by a
user interface or a general publish/subscribe system.

i. e., actors, can be distributed over a number of worker ma-
chines. When a rule triggers the match of a certain event
pattern, a high-level event is generated, which can then be
used by a user interface or a general publish/subscribe sys-
tem to react appropriately to it. Figure 2 shows a sketch of
the overall system.

Distribution The distribution scheme of Cloud PARTE is
illustrated in Figure 3. The nodes of the Rete network, repre-
sented in the figure as circles, are reified as actors. Multiple
actors execute concurrently but maintain a single thread of
control internally. The actors may be distributed over mul-
tiple machines. Each machine runs a single Cloud PARTE
process that can contain many actors, but every actor can
only be in one process at any given time. Thus, there is a
1 : 1 mapping between machines and processes, and a 1 : n
mapping between processes and actors.

Communication In a directed acyclic graph created by the
Rete algorithm, every node has one or more predecessors,
and zero, one or multiple successors. In our system, these
can be located on the same or on different machines. Ac-
tors are identified by unique names, which are used by the
Theron framework to route messages to the correct receiver.
When the rules are compiled into a Rete network at program
startup, actors are given their name and are informed of the
names of their predecessors and successors.

Theron uses the Crossroads I/O library7 to send messages
over a network. While this library uses TCP/IP as its com-
munication protocol, guaranteeing delivery of messages, it
drops messages when the receivers buffer is full. Unlike in
some Belief-Desire-Intent multiagent systems such as Ja-
son [5], Cloud PARTE’s semantics do not allow actors to
fail or refuse to react to messages. Our system hence em-

7 Crossroads I/O, A socket library providing platform-agnostic asyn-
chronous message-sending across different network protocols, access date:
August 15, 2013 http://www.crossroads.io

manager-1master

agenda

manager-2

manager-3 manager-4

master machine worker machine 1 worker machine 2

worker machine 3 worker machine 4

remotesender-1 remotesender-2

remotesender-3 remotesender-4

Figure 3: The distribution scheme employed by the system.
The boxes represent machines: the single master machine
contains the master actor and the agenda actor, and every
worker machine contains a part of the Rete network and a
manager actor.

ploys a best-effort based approach to overcome this issue,
by acknowledging the receipt of a message with a confirma-
tion message, similar to TCP. For this purpose, every Cloud
PARTE process contains one “RemoteSender” actor, which
is responsible for the confirmation protocol, and propagates
deserialized messages to the correct destination by local8

message-send. Despite being a main implementation issue,
we do not consider this a scientific challenge, since it could
be overcome using existing techniques.

Coordination While Cloud PARTE is distributed, it is not
decentralized. A master actor oversees the entire system,
and knows where each node is at every moment (assum-
ing no failure happened, failure resilience is considered fu-
ture work). During initialization, the master actor parses the
user-defined rules, creates a Rete network out of them, de-
cides which machines the nodes should move to, and informs
those machines’ manager actors of the nodes they need to
spawn. A manager actor exists per process. They each over-
see the part of the Rete network located on the machine they
are running in, and can spawn – and kill – Rete nodes and the
RemoteSender within their process. They keep track of the
nodes living in their process, and can for instance determine
whether the destination of a message-send is local.

The master actor’s process further contains the agenda ac-
tor. The agenda sequentializes side-effects performed from
within the Rete network. More specifically, whenever a com-
plete match for a rule is found, any callback function spec-
ified as the consequence of the rule is to be called through
the foreign function interface. This execution should not be
performed locally in the Rete node that detected the match.
Instead, a message requesting the execution is sent to the
agenda actor, which executes it on the master machine.

8 We refer to actors in the same process as local actors, and actors in other
processes as remote actors.

4 2013/10/23

http://www.crossroads.io


3.2 Distributed Execution Model
The Theron library implements the actor model by provid-
ing an Actor class that can be extended to create new types
of actors. Within a process, a Theron instance contains many
actors that run concurrently on a thread pool. On each ma-
chine in a LAN, one process is started, and their Theron in-
stances are connected. Inside an actor no parallelism is used.

A frequent issue in such concurrent systems is contention
for shared resources. Even with the actor model taking
care of low-level data races, access to actors’ inboxes re-
mains a point of contention. Where PARTE offered lock-
free inboxes, Theron’s need to potentially serialize mes-
sages across a LAN require it to forgo this optimization.
Within the Rete graph, though, every node has only one or
two predecessors. Only the master actor, the agenda and the
RemoteSender are heavily contended. Though these do pose
as potential bottlenecks, our experiments showed they are
able to keep up with the rest of the system. Furthermore, the
RemoteSender is only present to overcome a technical issue
of the Theron library. The only real, inherent bottlenecks lies
in the communication over the LAN. Reducing this network
traffic is part of our future work. One approach we envision
is to distribute the Rete graph in such a way that strongly
connected subgraphs in the Rete network tend to be phys-
ically close. This would reduce the need for inter-process
communication, and with that the contention for the LAN.

A second issue systems like Cloud PARTE face is effi-
cient serialization. When a message is sent to a local actor,
Cloud PARTE makes use of the shared memory space to skip
serialization. When the receiving actor is remote, however,
pointer-indirections would be invalid, so the message is seri-
alized to a flattened, uniform representation. When choosing
the serialization format, two considerations were made: the
compactness of the serialization, and the speed at which the
(de-)serialization can take place. These have an impact on
respectively the required bandwidth and the incurred latency
of message sends. In our experiments, JSON9 revealed suf-
ficiently small and fast, though we do consider improving
serialization future work.

Despite its support for distribution, Theron does not of-
fer support for code mobility, i. e., the ability to dynamically
change the bindings between code fragments and the loca-
tion where they are executed [7]. Since we require actors to
migrate between machines, we built mobility on top of the
existing library. Since an actor maintains no runtime stack
across turn borders, it can be migrated by sending its inbox
and its internal state.

We devised the schema depicted in Figure 4 to deal with
messages sent to an actor while it is moving. In a first phase,
the actor to move informs its predecessors, which from that
moment on start buffering their messages for the migrating

9 JSON (JavaScript Object Notation) is a text-based standardized language
used for data interchange. It is human-readable, which eases debugging but
does not lead to the most compact representation possible.

Master Worker 1 Worker 2 Worker 3

M N …

1. request to move

M N … M N … N

2(a). stop sending,
buffer instead

prepare move:
inform predecessors

switch flag to
buffer messages
to moving node

– serialize node
– delete it here
– send 4. serialized node

– deserialize node
– create it here

6(a). resume sending

6(b). move completed

send buffered
messages (if any)

5.

2(b).

Figure 4: The procedure to move a node to a different ma-
chine. Every worker machine contains one manager actor
(M) and several Rete node actors (N). In this figure, a node
on worker 2 moves to worker 3. The node on worker 1 is a
predecessor of the moving node: when it receives message
2(a) it starts buffering its messages destined for the moving
actor, when it receives message 6(a) it sends the buffered
messages to the now moved node.

actor. Once all predecessors are buffering, the actor is serial-
ized and destroyed, and the serialized representation is sent
to the destination machine’s manager. There, it is deserial-
ized and reconstructed, and the predecessors are notified so
that they can send their buffered messages.

3.3 Load Detection and Balancing
Cloud PARTE uses a global, centralized load balancing strat-
egy [19]. The manager of each process measures the load of
its local actors on a regular interval, and relays that informa-
tion to the master actor. The master then makes load balanc-
ing decisions based on this global information.

Non-trivial heuristics to base the load balancing decisions
on are outside of the scope of this paper, and considered
future work. Our experiments described later in this paper
were conducted with a simple heuristic that defines load as
a threshold on the number of unprocessed messages in an
actor’s inbox. Machines are in turn labeled as overloaded
or underloaded based on the amount of overloaded actors
they contain. Whenever at least one overloaded and one
underloaded machine are found, the master actor selects
an overloaded actor on the most overloaded machine and
migrates it to a randomly selected underloaded machine.

The movement of actors is fully transparent: the user does
not need to worry about the location of actors, or when and
where to move them. The load balancing algorithm deter-
mines this automatically. The predecessors of the moved ac-
tor need not do any lookup to ‘find’ the actor at its new lo-
cation: the unique name of the actor remains valid.

5 2013/10/23



4. Evaluation
4.1 Methodology and Setup
For the evaluation of Cloud PARTE’s performance, we con-
ducted a series of microbenchmarks. They ran on a network
of commodity computers, each containing a quad-core pro-
cessor10 and 8 GB of RAM memory and running the Ubuntu
12.04.2 operating system with a Linux 3.2.0-43-generic ker-
nel. All code was compiled using gcc 4.6.3 with optimiza-
tion flag -O3. The network is rated at 1000 Mbit/s. Based on
the methodology proposed by Georges et al. [8], every con-
figuration is executed at least 30 times, and is executed ad-
ditionally until either a confidence level of 95% is achieved,
or the configuration has been executed 75 times.

The experiments are parametrized by the following three
dimensions:

• The number of machines used. To measure the scalability
of the system, we gradually increased the number of
machines and measured the effect on the throughput. In
an ideal case, doubling the amount of machines doubles
the throughput.

• With/without confirmation messages. Enabling confirma-
tion messages is expected to cause a decrease in perfor-
mance, because 1) for every received message a confir-
mation is sent and received, 2) for every received mes-
sage a check for duplication is performed, and 3) for ev-
ery sent message it is regularly checked whether a confir-
mation has already been received or whether a resend is
warranted. To demonstrate that we incur a performance-
hit from the inherently hard problem of verified message-
delivery in a distributed system, we compare the version
of Cloud PARTE utilizing the RemoteSender with a ver-
sion assuming failure-free communication channels.

• With/without dynamic load balancing. The load balanc-
ing scheme introduced in subsection 3.3 is expected to
increase efficiency. We measured this by comparing the
system with dynamic load balancing with a version of the
system where dynamic load balancing was disabled.

The benchmarks we performed to evaluate Cloud PARTE
are a combination of benchmarks defined earlier by Renaux
et al. [17] for the evaluation of PARTE, and a new bench-
mark measuring the newly added aspects, namely distribu-
tion and dynamic load balancing. The existing benchmarks
can be categorized as 1) a number of microbenchmarks em-
ploying only pipeline parallelism while conducting simple,
complex, or heavyweight tests; 2) a number of microbench-
marks executing multiple of those pipelines in parallel; 3) a
microbenchmark executing a tree-shaped Rete-network that
is mostly unification- and communication-heavy; and 4) a
microbenchmark where multiple rules require a lot of pro-
cessing, but only one rule triggers the benchmark’s end, such

10 Specifically, an Intel Core i5-3570, a processor with a 64-bit architecture
running at a clock frequency of 3.40 GHz, with 6 MB of on-chip cache.

1 3 5 7 9 11 13 15 17 192 4 6 8 10 12 14 16 18 20Event type:
Phase 1:

Phase 2:

Phase 3:

Phase 4:

Phase 5:

Phase 6:

Phase 7:

Phase 8:

Phase 9:

Phase 10:

Figure 5: Partitioning of benchmark into phases: 100,000
events of 20 types are asserted in 10 phases, gradually pro-
gressing through these types. Each phase asserts events from
three to five different but consecutive event types.

Figure 6: A scenario that could lead to a situation such as
depicted in Figure 5: a number of cars move through an area,
within view of multiple cameras. As they move, they go out
of view of one camera and move into view of another.

that non-FIFO scheduling may cause a superlinear improve-
ment in detection latency. The new benchmark activates the
rules in phases, as demonstrated in Figure 5, simulating a
scenario such as the one depicted in Figure 6 where a group
of tracked cars moves though the view of multiple sensors.
In general, a scenario where different parts of the Rete net-
work become computation and/or memory-intensive during
the run time of the CED system is what caused the need for
load balancing in Cloud PARTE. Hence, this benchmark val-
idates the ability to adapt to changing workloads.

For every configuration, i. e., for every run of the bench-
mark with a certain set of parameters chosen, we measured
one of two variables:

Run time The time between inserting the first event of the
benchmark into the system, and successfully having pro-
cessed all of them. In other words, the experiments mea-
sure the time it takes for all of the events to percolate
through the Rete network.

6 2013/10/23



Benchmark Run time (ms) Slow-
PARTE Cloud PARTE down

101 simple tests 21.7± 1.4 391.4± 10.0 18.04
501 simple tests 70.6± 1.1 2,053.6± 53.9 29.10
101 complex tests 3,145.0± 4.3 16,810.4± 375.0 5.35

. . . with variables 7,302.1± 3.0 38,111.1±1,117.2 5.22
10×101 simple tests 212.8± 0.6 12,875.7± 550.8 60.49
10×8 heavy tests 4,907.8± 2.8 11,497.0± 580.9 2.34
16 heavy tests 104.4± 1.0 379.9± 8.1 3.64
32 heavy tests 199.4± 1.0 750.6± 13.5 3.76
64 heavy tests 389.2± 1.0 1,432.3± 31.5 3.68
128 heavy tests 772.7± 1.8 2,631.9± 81.2 3.41
Joining tree 29.0± 0.4 173.9± 2.5 5.99
Search 25,526.9±264.3 49,979.1±6,497.7 1.96

Table 1: Comparison of Cloud PARTE’s and PARTE’s run
times, and the 95% confidence interval of the results.

Throughput The number of events that can be processed
by the system per time unit. The throughput is measured
indirectly, by dividing the number of events generated
during the benchmark by the total run time.

Results are visualized in beanplots [14], a variation on
boxplots. The width of a ‘bean’ at a given height indicates
the density of measured results with that run time or through-
put. The horizontal lines indicate the arithmetic mean of the
results, and the dot marks the median.

4.2 Efficiency
The first experiment we conducted consists of a compari-
son of Cloud PARTE to PARTE, using the benchmarks cre-
ated for PARTE, run on one machine. Cloud PARTE was set
up with one worker process running on the same machine
as the master process. As expected, Cloud PARTE did con-
siderably worse, requiring inter-process communication for
I/O, and constantly depending on locking access to inboxes,
whereas PARTE uses nonblocking data structures, and heav-
ily exploits the shared memory architecture. Furthermore, in
PARTE benchmarks end when a match is found, whereas in
Cloud PARTE a trip to the master process is required first.
Still, these benchmarks serve as a useful baseline, demon-
strating Cloud PARTE’s overhead.

Figure 7a shows the situation for the representative case
of the “101 complex tests” benchmark. Cloud PARTE is on
average 5.35 times slower than PARTE. The worst situa-
tion arose with the “10 times 101 simple tests in parallel”
benchmark, an exceptionally computation-light and hence
scheduling- and communication-heavy benchmark. As Fig-
ure 7b shows, an average slowdown of 60.49 was mea-
sured. The best-case, where Cloud PARTE is only 1.96 times
slower, can be found in the “search” benchmark, whose re-
sults are plotted in Figure 7c. For completeness, Table 1
shows the run times of all benchmarks on both systems. Note
how PARTE, being tailored towards soft real-time behavior,
has much less variation in its run times – even when normal-
ized to absolute run time.

PARTE Cloud PARTE0

5

10

15

20

25

Ru
n 

tim
e 

(s
)

101 complex tests

(a) Runtime of the
“101 complex tests”
benchmark

PARTE Cloud PARTE0

5

10

15

20

25

Ru
n 

tim
e 

(s
)

10 times 101 simple
tests in parallel

(b) Runtime of the
“10 × 101 simple
tests” benchmark

PARTE Cloud PARTE0

50

100

150

200

Ru
n 

tim
e 

(s
)

Search

(c) Runtime of the
“search” benchmark

Figure 7: A comparison of the run time of PARTE and Cloud
PARTE when executing a subset of the benchmarks on a
single machine.

4.3 Static Scalability
The second experiment assesses the scalability of Cloud
PARTE by measuring the throughput as the amount of ma-
chines is increased. Two variants of Cloud PARTE are com-
pared, one using confirmation messages and one without.

In this benchmark, a rule duplicates every incoming event
to fifteen pipelines conducting sixteen heavy tests each on
the event, and each generating a complex event on com-
pletion, signaling a seventeenth and final rule, which uni-
fies all complex events and ends the benchmark when all
events were processed. As an initial setup, this Rete network
is deployed over eight machines and run. Subsequently, the
number of machines is halved (to four), by merging two ma-
chines’ processes into one; this is repeated two more times
(for set-ups with two and one machine). For these tests, dy-
namic load balancing was disabled.

Table 2 shows the results. The version with confirmation
messages performs, as can be expected, less well than the
one without them: on eight machines the extra communica-
tion overhead of the confirmation messages nearly halves the
speed of the system. The table shows that moving from a set-
up with one machine to one with two machines does not pro-
vide much benefit: this is because in the case of one machine
all communication is local while when using two machines
(de)serialization and network communication is necessary.
However, the throughput nearly doubles when increasing the
amount of machines from two to four, and from four to eight.
While ideal speedup is not achieved, from four machines on,
Cloud PARTE achieves a higher throughput than PARTE,
demonstrating that an automatically load balanced distribu-
tion based on mobile actors enables scaling of inference en-
gines beyond the capabilities of a single machine.

4.4 Dynamic Scalability
In the third experiment, the benefits of dynamic load balanc-
ing and elasticity are demonstrated. To this end, three sce-
narios are compared: one in which dynamic load balancing
is disabled, secondly a scenario that allows dynamic load

7 2013/10/23



10

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

s)

PARTE

1 2 4 8
Number of machines

0

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

s)

Cloud PARTE (without
confirmation messages)

1 2 4 8
Number of machines

0

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

s)

Cloud PARTE (with
confirmation messages)

Figure 8: Beanplots indicating the distribution of mea-
surements of the throughput (in messages per second) of
PARTE, Cloud PARTE without confirmation messages, and
Cloud PARTE with confirmation messages, as the amount
of machines increases. The green dashed lines indicate ideal
speedup.

Number of PARTE Cloud PARTE
processes no conf. confirmation

1 266 (1.00x) 131 (0.49x) 141 (0.53x)
2 — 199 (0.75x) 161 (0.60x)
4 — 393 (1.48x) 351 (1.32x)
8 — 792 (2.98x) 407 (1.53x)

Table 2: Median throughput and ratios of the benchmark of
Figure 8.

balancing, and lastly a configuration in which an additional
empty machine is present. In all scenarios the Rete network
is initially distributed over two machines at startup by a hard-
coded distribution scheme. The second scenario shows the
benefit of dynamic load balancing, whereas the third shows
the elasticity provided by the system.

The most relevant benchmark is hence the new ‘phased’
benchmark introduced in subsection 4.1 and depicted in Fig-
ure 5, which consists of twenty rules – one for each event
type. The initial distribution of all twenty rules on the first
machine corresponds to a reasonable real-life situation, since
one may not know in advance how the entities whose events
are being pattern matched will behave.

The results plotted in Figure 9 show that both the dynamic
load balancing and the elasticity of Cloud PARTE can offer
measurable improvements. The median run time for the base
case where load balancing is disabled is 110.36 seconds,
while the median time for the load balanced version is 98.45
seconds, i. e., 10.8% faster. The addition of a third machine
decreases the run time even further to 91.69 seconds, a
16.9% decrease compared to the original.

By logging the migrations triggered by the load balancer,
we confirmed that the performance increase indeed cor-
relates to the correct migration of overloaded nodes. The
heuristics used by the load balancing algorithm described in

No dynamic load balancing
(2 machines)

Dynamic load balancing
(2 machines)

Dynamic load balancing
(3 machines)

0

50

100

150

200

250

300

Ru
n 

tim
e 

(s
)

Dynamic load balancing

Figure 9: Comparison of run time with manual distribution
of the Rete network over 2 machines and (a) no load balanc-
ing, (b) load balancing, (c) load balancing and an extra third
machine. The blue +s indicate outliers.

subsection 3.3 are little more than a proof-of-concept, and
improving these is considered future work. Still, it tends to
move nodes around such that the active nodes of the cur-
rent phase are balanced over the machines. Occasionally,
it moves too few or too many nodes, since the number of
nodes which have moved are simply not part of the equation
the load balancer uses. In those cases, the run time peaks.

4.5 Discussion
We conclude from our performance evaluation that mobile
actors, as employed in Cloud PARTE, succeed in offering
an improvement over the state of the art in complex event
detection. While an overhead definitely but obviously ex-
ists in the distribution, this overhead can be overcome by
increasing the number of machines. An additional benefit is
gained from load balancing, even with the simple heuristics
and a straightforward migration system which only allows
one node to be on the move at the same time, and uses the
suboptimal JSON format for serialization.

The elasticity of Cloud PARTE effectively manages to
provide ‘free’ additional speedup by simply plugging in an-
other machine. Currently, all machines have to be present at
startup time of Cloud PARTE, though this is but a technical
issue: there is no conceptual limitation prohibiting machines
to arrive when the system is already running. Even support
for unloading machines and subsequently retiring them from
the system is just some engineering-effort away.

A number of open problems remain, which require more
research to be resolved. Those are listed in section 6.

5. Related Work
5.1 Parallel and Distributed Rete
The Rete algorithm is widely used, and several parallel and
distributed variants exist already.

The parallelization approach taken by Gupta et al. [10] is
similar to ours: every node of the Rete network is considered
a ‘task’, and is given an internal thread of control. Based on

8 2013/10/23



the data-flow like organization of the Rete network, multiple
tokens will be flowing through the Rete network simulta-
neously, and as a result multiple nodes can be active at the
same time. Their approach is more general, as it’s not limited
to event processing, but they therefore have to forgo concep-
tual optimizations that rely on temporal reasoning, e. g., in
Cloud PARTE events expire automatically, whereas in their
approach facts need to be explicitly retracted.

The approach of Kelly and Seviora [15] increases the
granularity of the parallelization: instead of considering indi-
vidual Rete nodes as tasks, single token–token comparisons
are parallelized. Thus, nodes of the Rete network are split
into several copies, one copy for every token in their as-
sociated memory node. Each of these copies is a separate
task. The level of parallelism increases, but the amount of
communication increases as well; as such this approach is
suitable for shared memory systems but not for distributed
systems.

A different approach to distributing the Rete algorithm is
taken by Aref and Tayyib [2]: in their Lana–Match algorithm
the Rete network is duplicated among a number of worker
processors. Changes to the working memory made by the
workers are synchronized by a single, centralized master, us-
ing an optimistic algorithm which backtracks in case of con-
flicting updates. The optimistic algorithm assumes each rule
will only change a very small part of the fact base and that
conflicts are rare. Furthermore, in Lana–Match the central-
ized master processor will be processing all changes to the
working memory, and can therefore become a bottleneck,
while in Cloud PARTE the master only handles incoming
data and the working memory is spread over the workers.
In Cloud PARTE, the event base is spread over the worker
machines, but appears as a single unit.

Lastly, yet other systems use a hierarchical blackboard,
for example the Parallel Real-time Artificial Intelligence
System (PRAIS) by Goldstein [9] and the Hierarchically Or-
ganized Parallel Expert System (HOPES) by Dai et al. [3]. In
these systems, each knowledge source (KS) contains a rule,
and multiple KSs can simultaneously process information.
This information is shared through a blackboard, a global
database that contains all information about the problem cur-
rently in the system. KSs incrementally update the black-
board leading to a solution to the problem. This approach is
more coarse grained than Cloud PARTE, leading to a lower
level of parallelism. These systems also do not focus on scal-
ability and elasticity.

5.2 Mobile Actors and Dynamic Load Balancing
Using mobile actors as a mechanism for load balancing ex-
ists in other systems. For instance, Lange et al. [16] in-
troduce “Aglets”, a Java implementation of mobile actors
(also called mobile agents). Fuggetta et al. [7] describe a
distributed information system, in which information is dis-
persed throughout a network, and code moves to be ‘closer’
to the data it uses. In these systems, the actors are proactive:

they decide when to move and to where, for instance when
it is impossible or unfeasible to move the information (e. g.,
because of its huge size). In our system movements are reac-
tive: the load balancer decides when an actor should move, to
provide each actor with the computational resources it needs.

SALSA [18] is an actor-based language in which actors
are distributed over multiple machines. Actors are serial-
ized for migration, as in our system, and references between
actors remain valid through the use of a universal naming
scheme, this too is similar in our system. In SALSA, the
code of a universal actor needs to be present on every ma-
chine, in our system this is partly the case: the code to create
any of the five primitive node types of the Rete algorithm
needs to be present on each machine, but the code supplied
by the user as part of a rule will be migrated along with
the actor that contains it (and it is reparsed when the ac-
tor is resumed). Desell et al. [4] describe how load balanc-
ing is added to SALSA. A major difference between Cloud
PARTE and SALSA is that, in Cloud PARTE, the load bal-
ancing is centralized (a master machine gathers load infor-
mation and makes load balancing decisions), while SALSA
supports several decentralized load balancing techniques. In
these techniques, lightly loaded machines will attempt to
steal work from other machines. These ideas are applicable
to Cloud PARTE and will be investigated in the future.

Lastly, in the blackboard systems discussed in the previ-
ous subsection (PRAIS [9] and HOPES [3]), each actor con-
tains one rule, while in Cloud PARTE each actor contains
only a part of the rule (one node of the Rete network). As
a result, load balancing in these blackboard systems would
consist of moving a complete rule, while in Cloud PARTE
parts of rules can be executed on different machines and
move independently. Because of this finer granularity, Cloud
PARTE will allow a higher amount of parallelism and greater
load balancing flexibility.

6. Conclusions and Future Work
Cloud PARTE is a complex event detection system that dis-
tributes the Rete algorithm over multiple machines, using
mobile actors in order to respond to changing work loads.
It is designed for applications such as traffic monitoring or
crowd management, where large amounts of data need to be
processed and it is therefore necessary to use multiple ma-
chines. Cloud PARTE does not require programmer effort
in the distribution of rules, but despite the transparency of
the load balancing and elasticity, it retains the semantics of
a single unified Rete network.

Variations in the work load make dynamic load balancing
necessary. Cloud PARTE uses mobile actors, i. e. actors that
can migrate between machines at run time, to provide load
balancing. This also enables elasticity: a machine can be
added at run time and the load will be redistributed.

Based on a set of micro- and synthetic benchmarks, we
show that Cloud PARTE is a scalable and elastic system that

9 2013/10/23



can handle increasing amount of work, and that dynamic
load balancing provides an additional benefit in distributing
the work evenly over the available machines.

Future work will address the large communication over-
heads, and improve the load balancing algorithm to take into
account more factors, such as putting closely connected Rete
nodes on the same machine, or estimating the cost and poten-
tial gain of the migration. Furthermore, migration currently
is a cooperative effort, requiring both the migrating actor and
its predecessors to work in close collaboration. Future re-
search should focus on decoupling the actors, up to the point
of adding fault tolerance to the system, such that failure of
individual machines can be overcome without undermining
the entire system. Finally, we envision extensions to the ex-
pressiveness of the querying system in the form of dynamic
queries of the knowledge base, and support for negation and
existential quantification in the rule language.

References
[1] S. S. Adams, S. Bhattacharya, B. Friedlander, J. Gerken,

D. Kimelman, J. Kraemer, H. Ossher, J. Richards, D. Un-
gar, and M. Wegman. Enterprise context: A rich source of
requirements for context-oriented programming. In Proceed-
ings of the 5th International Workshop on Context-Oriented
Programming, COP’13, pages 3:1–3:7, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2040-5. .

[2] M. M. Aref and M. A. Tayyib. Lanamatch algorithm: a par-
allel version of the retematch algorithm. Parallel Computing,
24(5-6):763–775, June 1998. ISSN 0167-8191. .

[3] H. Dai, T. Anderson, and F. Monds. On the implementa-
tion issues of a parallel expert system. Information and Soft-
ware Technology, 34(11):739–755, November 1992. ISSN
09505849. .

[4] T. Desell, K. E. Maghraoui, and C. Varela. Load Balancing of
Autonomous Actors over Dynamic Networks. In Proceedings
of the Proceedings of the 37th Annual Hawaii International
Conference on System Sciences, number 9 in HICSS’04, pages
1–10, 2004. ISBN 0769520561.

[5] A. Fernández Dı́az, C. Benac Earle, and L.-A. Fredlund.
Adding distribution and fault tolerance to jason. In Proceed-
ings of the 2nd edition on Programming systems, languages
and applications based on actors, agents, and decentralized
control abstractions, AGERE! ’12, pages 95–106, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1630-9. .

[6] C. L. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19(1):
17–37, 1982. ISSN 0004-3702. .

[7] A. Fuggetta, G. Picco, and G. Vigna. Understanding code
mobility. IEEE Transactions on Software Engineering, 24(5):
342–361, May 1998. ISSN 00985589. .

[8] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rig-
orous java performance evaluation. In Proceedings of the
22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, OOPSLA ’07, pages
57–76. ACM, 2007. ISBN 978-1-59593-786-5. .

[9] D. Goldstein. Extensions to the Parallel Real-Time Artificial
Intelligence System(PRAIS) for fault-tolerant heterogeneous
cycle-stealing reasoning. In Proceedings of the 2nd Annual
CLIPS (’C’ Language Integrated Production System) Confer-
ence, NASA. Johnson Space Center, pages 287–293, Houston,
September 1991.

[10] A. Gupta, C. Forgy, A. Newell, and R. Wedig. Parallel algo-
rithms and architectures for rule-based systems. In Proceed-
ings of the 13th annual international symposium on Computer
architecture, ISCA ’86, pages 28–37. IEEE Computer Society
Press, 1986. ISBN 0-8186-0719-X. .

[11] L. Hoste, B. Dumas, and B. Signer. Mudra: A Unified Multi-
modal Interaction Framework. In Proceedings of ICMI 2011,
13th International Conference on Multimodal Interaction, Al-
icante, Spain, Nov. 2011.

[12] L. Hoste, B. De Rooms, and B. Signer. Declarative Ges-
ture Spotting Using Inferred and Refined Control Points. In
Proceedings of ICPRAM 2013, 2nd International Conference
on Pattern Recognition Applications and Methods, Barcelona,
Spain, February 2013.

[13] M. W. Kadous. Learning Comprehensible Descriptions of
Multivariate Time Series. In Proceedings of ICML 1999, Bled,
Slovenia, June 1999.

[14] P. Kampstra. Beanplot: A boxplot alternative for visual com-
parison of distributions. Journal of Statistical Software, Code
Snippets, 28(1):1–9, Oct. 2008. ISSN 1548-7660.

[15] M. A. Kelly and R. E. Seviora. A multiprocessor architec-
ture for production system matching. In Proceedings of the
National Conference on Artificial Intelligence, pages 36–41,
1987.

[16] D. Lange, M. Oshima, G. Karjoth, and K. Kosaka. Aglets:
Programming mobile agents in Java. In Proceedings of the
International Conference on Worldwide Computing and Its
Applications, pages 253–266, 1997. .

[17] T. Renaux, L. Hoste, S. Marr, and W. De Meuter. Parallel ges-
ture recognition with soft real-time guarantees. In Proceed-
ings of the 2nd edition on Programming Systems, Languages
and Applications based on Actors, Agents, and Decentralized
Control Abstractions, SPLASH ’12 Workshops, pages 35–46,
New York, NY, USA, October 2012. ACM. ISBN 978-1-
4503-1630-9. .

[18] C. Varela and G. Agha. Programming dynamically reconfig-
urable open systems with SALSA. ACM SIGPLAN Notices,
36(12):20, Dec. 2001. ISSN 03621340. .

[19] M. J. Zaki, W. Li, and S. Parthasarathy. Customized Dynamic
Load Balancing for a Network of Workstations. Technical
report, The University of Rochester, Rochester, New York,
USA, 1995.

10 2013/10/23


	Introduction
	Context and Requirements
	Traffic Monitoring
	Requirements

	Cloud PARTE
	Architecture
	Distributed Execution Model
	Load Detection and Balancing

	Evaluation
	Methodology and Setup
	Efficiency
	Static Scalability
	Dynamic Scalability
	Discussion

	Related Work
	Parallel and Distributed Rete
	Mobile Actors and Dynamic Load Balancing

	Conclusions and Future Work

