
Just-in-Time Inheritance
A Dynamic and Implicit Multiple Inheritance Mechanism

Mattias De Wael
Software Languages Lab

Vrije Universiteit Brussel (Belgium)
madewael@vub.ac.be

Janwillem Swalens
Software Languages Lab

Vrije Universiteit Brussel (Belgium)
jswalens@vub.ac.be

Wolfgang De Meuter
Software Languages Lab

Vrije Universiteit Brussel (Belgium)
wdmeuter@vub.ac.be

Abstract
Multiple inheritance is often criticised for the ambiguity that
arises when multiple parents want to pass on a feature with
the same name to their offspring. A survey of programming
languages reveals that no programming language has an
inherently implicit and dynamic approach to resolve this
ambiguity. This paper identifies just-in-time inheritance as
the first implicit and dynamic inheritance mechanism. The
key idea of just-in-time inheritance is that one of the parents
is favoured over the others, which resolves the ambiguity,
and that the favoured parent can change at runtime. However,
just-in-time inheritance is not the silver bullet to solve all
ambiguity problems heir to multiple inheritance, because
it is not applicable in all scenarios. We conclude that the
applicability of just-in-time inheritance is to be found in
systems where multiple inheritance is used to model an “is-a
OR is-a”-relation, rather than the more traditional “is-a AND
is-a”-relation.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features: Inheri-
tance; F.3.3 [Logics and Meanings of Programs]: Studies
of Program Constructs: Object-oriented constructs

Keywords multiple inheritance, just-in-time data structures

1. Introduction
Inheritance is one of the key features of object-oriented lan-
guages. It allows for code reuse and modularisation. Multi-
ple inheritance is a feature that only some object-oriented
languages support. However, multiple inheritance is often
criticised due to the ambiguity introduced when inheriting

features with colliding names from multiple parents [3]. Dif-
ferent solutions to resolve the ambiguity have been proposed
over the years, ranging from rejecting ambiguous programs
to putting the burden to resolve the ambiguity fully on the
developer. A survey of the existing solutions (see section 2)
reveals that most programming languages propose a static
approach (e. g., rejection at compile time) and that only a few
allow the developer to express dynamic resolution strate-
gies. Based on this survey, we conclude that no program-
ming language exists today that proposes a dynamic and im-
plicit multiple inheritance mechanism. We identify that such
a mechanism is favourable when multiple inheritance is used
to model an “is-a OR is-a” relation instead of the more con-
ventional use of multiple inheritance, which is to model an
“is-a AND is-a” relation.

The core contributions of this paper are the identification
and the description of the first dynamic and implicit multiple
inheritance mechanism, which we call just-in-time inheri-
tance. The key idea behind just-in-time inheritance is that
one of the multiple parents is favoured over the others and
that the favoured parent can change at runtime.

Just-in-time inheritance has been implemented in the pro-
gramming language JitDS [6]. The goal of this paper is to
study just-in-time inheritance in isolation and in comparison
to other multiple inheritance mechanisms. In earlier work,
we already extensively motivated, discussed, and evaluated
the language JitDS in general [6]. Here, the focus and argu-
mentation is different: we study how other languages deal
with the ambiguity introduced by multiple inheritance (sec-
tion 2); we taxonomize just-in-time inheritance according to
the Treaty of Orlando (section 2.1); we motivate the need
for a dynamic and implicit multiple inheritance mechanism
(section 3); we formally describe the semantics of a method
invocation in just-in-time inheritance (section 3.2); we dis-
cuss in which scenarios just-in-time inheritance is applicable
(section 4); and we compare just-in-time inheritance with
other software engineering techniques (section 4.1). Finally,
in section 5, we compare the idea of just-in-time inheritance
with other programming languages and frameworks that are
not necessarily related to multiple inheritance and section 6
summarises our findings.

2. Mitigating Ambiguity, How Do They Do It
When a class inherits from more than one super-class, one
might wonder what happens with members that share the
same name? This question identifies the ambiguity that
arises when dealing with multiple inheritance. Language de-
signers have tried to mitigate this ambiguity in various ways.
Here, we provide a concise overview of these language de-
signs:

Ambiguity Rejection A trivial solution to resolve ambigu-
ity is to not allow it. A compiler that detects ambigu-
ity usually generates an error or warning, which puts
the burden on the developer to work around the prob-
lem. In C++, for instance, the implementation for T,
which implements both A and B, will not be accepted by
the compiler. GCC, for instance, gives the following er-
ror: member ’foo’ found in multiple base
classes of different types.

class A { virtual int foo(){ return 0;} };
class B { virtual int foo(){ return 1;} };
class T : public A, public B { };

Linearisation Another approach is to statically define, e. g.,
as part of the language specification, how method and
field lookup is going to be performed. To this end all fea-
tures in the inheritance hierarchy, a graph, are linearised
accordingly. The programming language Dylan, for in-
stance, uses the C3 algorithm to turn the hierarchy graph
into a linear structure [1]. The simplest, and often used,
linearisation algorithm is “last man standing”, where af-
ter textual inclusion of the super-classes, the last defini-
tion “wins”. This is for instance the case in OCAML [19].
Lookups in a linearised hierarchy are similar to lookups
in the context of single inheritance. Hence, there is no
ambiguity.

Prioritised Multiple Inheritance also relies on some form
of linearisation, but there the responsibility for resolving
ambiguity lays explicitly with the developer [4]. It is the
job of the developer to assign priorities to each of the
parents to guide the linearisation. This strategy was first
introduced in SELF [4].

Select and Rename is a technique to resolve ambiguity by
explicitly renaming features with colliding names in the
subclass. In Eiffel [14], to remove the ambiguity the
version of foo from A could be renamed to bar and the
version of foo from B could be renamed to baz.

class T inherit A rename foo as bar
B rename foo as baz

Explicit Inheritance can be seen as a variant of “Select
and Rename”, where features with colliding names can
only be used when they are explicitly qualified with the
intended super-class’ name. This is for instance allowed
in C++, where the call ptr->A::foo() explicitly uses
the method foo of A [8].

Protocols/Interfaces allow classes to inherit only the pro-
tocol they have to adhere to: only method signatures are
inherited, without an implementation. Since this implies
there is only a single implementation, namely that of the
implementing subclass, no ambiguity on which code to
execute is present. In Java, for instance, a class can in-
herit from only one super-class, but it can implement as
many interfaces— this is how protocols are called in Java
—as needed [12].

Method Combination is a technique where a developer can
resolve ambiguity in the body of an overriding method,
that needs access to a super-method, by combining all the
super-methods. In Common Lisp (CLOS), for instance, a
method can return the sum (i. e., a combination) of the re-
sults of all its super-methods [22]. Besides +, eight other
primitive method-combinators are available, but defining
own method-combinators is also possible.

(defgeneric leaf-count (tree)
(:documentation "Return leaf count.")
(:method-combination +))

Most Specific Argument When a subclass overrides a method
of one of its ancestors, it is in some languages allowed
to refine the signature, i. e., methods are co-variant in the
return type and contra-variant in their argument types. In
CLOS, for instance, the method that matches the argu-
ment types the most is invoked, i. e., including dispatch
on the argument type. Note that this technique only re-
duces the “chances” of ambiguity: when there is still
ambiguity present CLOS resorts to other techniques to
resolve the ambiguity.

Meta-object Protocol Some languages make the implicit
behaviour (e. g., member lookup) of objects (and classes)
developer definable. A meta-object protocol (MOP) [17],
for instance, allows a developer to redefine, on a per in-
stance basis, how an object should behave when an at-
tribute is requested. This meta-object protocol includes
a definition of how an object should invoke a method.
Thus, altering the meta-object of an object gives a pro-
grammer explicit control to implement his own feature
resolution algorithm.

All techniques presented above1 focus on behaviour.
When state is also considered, there is another dimension
that comes into play: replication versus unification. C++ [8],
for instance, tackles this explicitly through virtual inheri-
tance, which ensures that the state of a shared ancestor is
only present once. In the remainder of this text, however, we
focus on behaviour only.

1 The attentive reader might be missing a discussion on mixins (or traits
or shakeins) in this section. While mixins are arguably not multiple inheri-
tance, they where introduced to resolve some problems that stem from mul-
tiple inheritance. When it comes to resolving ambiguity, however, mixins
suffer from the same issues. Hence, languages that support mixins need to
resort to one of the ambiguity mitigation strategies as presented in this sur-
vey, e. g., linearisation as in Scala [20, Chapter 5].

Listing 1: RowMajorMatrix.
1 class RowMajorMatrix {
2
3 var rows, col, data;
4
5 RowMajorMatrix(rows, cols) {
6 this.rows = rows;
7 this.cols = cols;
8 this.data = new Array();
9 }

10
11 getRows() { return rows; }
12 getCols() { return cols; }
13
14 get(row, col) {
15 idx = row*getCols()+col;
16 return data[idx];
17 }
18
19
20 set(row, col, val) {
21 idx = row*getCols()+col;
22 data[idx] = val;
23 }
24
25
26 transpose() {
27 /* implementation omitted */
28 }
29 }

Listing 2: SparseMatrix.
1 class SparseMatrix {
2
3 var rows, col, data;
4
5 SparseMatrix(rows, cols) {
6 this.rows = rows;
7 this.cols = cols;
8 this.data = new Dictionary();
9 }

10
11 getRows() { return rows; }
12 getCols() { return cols; }
13
14 get(row, col) {
15 idx = row*getCols()+col;
16 if (data.contains(idx)) return data.get(idx);
17 else return 0.0
18 }
19
20 set(row, col, val) {
21 idx = row*getCols()+col;
22 if (val == 0.0) data.drop(idx);
23 else data.put(idx, val);
24 }
25
26 nonZeroElementsIterator() {
27 return data.iterator();
28 }
29 }

2.1 Treaty of Orlando
Stein, Lieberman, and Ungar identified three dimensions
along which to categorise inheritance mechanisms [18]. The
third dimension describes whether objects inherit from other
objects, or whether classes inherit from other classes. This
dimension is extensively discussed by Jones et al. [15], but
falls out of the intended scope of this text.

The first two dimensions have been described by
Stein, Lieberman, and Ungar in their Treaty of Or-
lando as follows [18]:

First, whether static or dynamic: When does the system
require that the patterns of sharing be fixed? Static systems
require determining the sharing patterns by the time an ob-
ject is created, while dynamic systems permit determination
of sharing patterns during runtime, when an object actually
receives a message.

Second, whether implicit or explicit: Does the system
have an operation that allows a programmer to explicitly
direct the patterns of sharing between objects, or does the
system do this automatically and uniformly? Explicit dele-
gation (or inheritance) allows the ability to delegate only a
single method, rather than “anything that can’t be handled
locally.”

If we categorise all the solutions from section 2 using
the first two dimensions of the Treaty of Orlando [18], we
identify that none of the existing solutions are dynamic
(the system determines sharing patterns at runtime) and
implicit (the system handles inheritance automatically and
uniformly) at the same time. Concretely, most solutions are
static in the sense that, for a given inheritance hierarchy, the

lookup strategy is fixed at object creation time. Those few
approaches that are dynamic require explicit intervention of
the programmer to modify how lookup should take place,
e. g., changing the MOP or changing priorities.

3. Just-in-Time Inheritance
Just-in-time inheritance is a dynamic multiple inheritance
mechanism where one of the parents is favoured over the
others and where this favoured parent can change at runtime.
This means that the just-in-time inheritance mechanism is
both dynamic and implicit, which is rather unique accord-
ing to section 2. In this section we first briefly sketch a sce-
nario in which a dynamic and implicit multiple inheritance
mechanism is favourable. Then, we explain how just-in-time
inheritance is realised in JitDS.

Imagine two implementations of the mathematical con-
cept “matrix”. One implementation stores all the elements in
a large array, while the other stores the non-zero elements in
a dictionary with the row-column pairs as keys. As a result
of the different memory layouts, the behaviour (e. g., how
are elements retrieved and stored) is also different in both
implementations. The choice of how to store the elements
can have a significant effect on the performance of an ap-
plication. Thus, depending on how a matrix object is used
and/or how many zero values it contains, a different imple-
mentation might be favourable. The favoured implementa-
tion can even change during the execution of the program,
e. g., when the number of zero-values increases. In such a
scenario, dynamically changing from which implementation
to inherit the behaviour (and state), can be desirable. Fur-
thermore, having an implicit mechanism is be desirable over

Listing 3: The class Matrix combines two representations.
1 class Matrix
2 combines RowMajorMatrix, SparseMatrix {
3 ...
4 }

Listing 4: Using an instance of Matrix.
1 mA = new Matrix.RowMajorMatrix();
2 mA.set(0, 1, 123);
3 it = mA.nonZeroElementsIterator();
4 while(it.hasNext()) { ... }
5 mA.get(0,1);

a mechanism where the intended implementation has to be
specified explicitly every time.

In the remainder of this section we explain just-in-time
inheritance by implementing the scenario sketched above.
This scenario formed the motivating example when design-
ing the recent programming language JitDS. The code we
show here, uses the syntax from [6], but is stripped from its
static types.

Listings 1 and 2 define two simple classes that mostly
implement the same methods: getRows, getCols, get,
and set. This is the set of getters and setters one would typi-
cally expect in the implementation of a matrix ADT. Further,
RowMajorMatrix implements the method transpose
(actual implementation is omitted) and SparseMatrix
implements the method nonZeroElementsIterator,
an accessor that only makes sense for “sparse matrixes”.

In JitDS, it is possible to define a just-in-time class which
combines multiple representations, which are simple classes.
Instances of such a class, just-in-time objects, inherit the
members of all parents and thus make use of some form of
multiple inheritance.

An example is the just-in-time class Matrix that com-
bines the two classes RowMajorMatrix and Sparse-
Matrix, and which is shown in listing 3.

Listing 4 shows how to create a new just-in-time ob-
ject with RowMajorMatrix as initial representation. This
means that RowMajorMatrix is the favoured parent of the
object referenced by mA and that when set is called (line 2),
the method as it is found in RowMajorMatrix is invoked.

Calling the method nonZeroElementsIterator
(line 3) also works as expected: no viable method is found
in the favoured parent, hence the method as it is found in
SparseMatrix is executed. However, when this happens,
the favoured parent is implicitly changed to the special-
ist representation, i. e., the parent that does support the re-
quested method. In JitDS this is called a specialised swap.
In this example, the favoured parent changes from Row-
MajorMatrix to SparseMatrix and thus when get
is called on line 5, the method as it is found in Sparse-
Matrix is invoked.

Listing 5: The class Matrix combines three representa-
tions.
1 class Matrix
2 combines RowMajorMatrix,
3 ColMajorMatrix,
4 SparseMatrix {
5
6 RowMajorMatrix to ColMajorMatrix {
7 target.rows = source.cols;
8 target.cols = source.rows;
9 target.data = source.data;

10 target.transpose();
11 }
12
13 ColMajorMatrix to RowMajorMatrix {
14 target.rows = source.cols;
15 target.cols = source.rows;
16 target.data = source.data;
17 target.transpose();
18 }
19
20 RowMajorMatrix to SparseMatrix {
21 target.rows = source.rows;
22 target.cols = source.cols;
23 target.data = new Dictionary;
24 for (row in target.rows)
25 for (col in target.cols)
26 target.set(row, col, source.get(row, col));
27 }
28
29 SparseMatrix to RowMajorMatrix {
30 target.rows = source.rows;
31 target.cols = source.cols;
32 target.data = new Array;
33 it = source.nonZeroElementIterator();
34 while (it.hasNext()) {
35 key, val = it.next();
36 target.data[key] = val;
37 }
38 }
39
40 }

Figure 1 shows how having a favoured parent can resolve
ambiguity: in figure 1a it is unclear which of the methods has
to be selected upon invocation, whereas in figures 1b and 1c
the favoured parent (thick line) is chosen. The call to non-
ZeroElementsIterator causes the favoured parent to
change, e. g., like a transition from figure 1b to figure 1c.

Transition Functions In practice, changing the favoured
parent may be a less trivial transformation than assumed
above. To express such transformations JitDS introduces
a new kind of class member in the body of just-in-time
classes: transition functions. Consider an extended version
of Matrix (see listing 5) which this times also combines a
third class ColMajorMatrix.2

The transition function on lines 6–11 in listing 5, for
instance, defines the transition from a source object, an in-
stance of RowMajorMatrix, to a target object, an in-
stance ColMajorMatrix. The body of the transition func-
tion (between curly braces) is similar to a constructor’s
body, where source and target are pseudo-variables (cf.
this and super) that denote the object as it was before

2 The implementation is omitted, but is similar to the one found in listing 1
up to the computation of idx.

+ getRows()
+ getCols()
+ get(row,col)
+ set(row,col,val)
+ transpose()

- rows
- cols
- data

RowMajorMatrix

+ getRows()
+ getCols()
+ get(row,col)
+ set(row,col,val)
+ nonZeroElementsIterator()

- rows
- cols
- data

SparseMatrix

Matrix

(a) A hierarchy where most method calls
are ambiguous.

+ getRows()
+ getCols()
+ get(row,col)
+ set(row,col,val)
+ transpose()

- rows
- cols
- data

RowMajorMatrix

+ getRows()
+ getCols()
+ get(row,col)
+ set(row,col,val)
+ nonZeroElementsIterator()

- rows
- cols
- data

SparseMatrix

Matrix

(b) A hierarchy where RowMajor-
Matrix is favoured.

+ getRows()
+ getCols()
+ get(row,col)
+ set(row,col,val)
+ transpose()

- rows
- cols
- data

RowMajorMatrix

+ getRows()
+ getCols()
+ get(row,col)
+ set(row,col,val)
+ nonZeroElementsIterator()

- rows
- cols
- data

SparseMatrix

Matrix

(c) A hierarchy where SparseMatrix
is favoured.

Figure 1: The hierarchy of Matrix with two super-classes RowMajorMatrix and SparseMatrix.

RowMajorMatrixColMajorMatrix SparseMatrix

Figure 2: The transition graph for the just-in-time class
Matrix from listing 5.

the transformation and the object as it supposed to be after
the transformation, respectively. The set of four transition
functions gives rise to the graph shown in figure 2. In JitDS,
such a graph is called the transition graph of a just-in-time
class.

When a new favoured parent has to be chosen, the transi-
tion graph resolves some ambiguity. The shortest path from
the current favoured parent to another parent with the re-
quested method is computed. The last node on this path be-
comes the new favoured parent. Note that just-in-time in-
heritance does not resolve all ambiguity. When the shortest
path is not unique, the order in which the classes occur in the
combines-clause is used as a tie-breaker. Relying on this
tie-breaker is effectively a sort of linearisation of the tran-
sition graph, cf. section 2. In general, this ambiguity could
be resolved using any of the solutions presented in section 2.
When no path exists, a runtime error is issued.

Swap Statements Finally, JitDS also foresees a construct
to explicitly change the favoured parent. To change the
favoured parent of mA to ColMajorMatrix, one could use
a swap statement and write mA to ColMajorMatrix.

3.1 Unconventional Class Hierarchy
For the sake of presentation, we opted to avoid a common an-
cestor for the matrix classes in the example programs above,
hence the code duplication. The fields rows and cols and
the methods getRows and getCols, for instance, could
be implemented in a super class VirtualMatrix (cf.
refactoring Extract Superclass [9]) to promote code reuse.

The UML diagram of the resulting class hierarchy (as
shown in figure 3) allows us to reflect on the unconven-
tional class/type hierarchy when modelling a just-in-time
class. First, RowMajorMatrix and SparseMatrix in-

+ get(row,col)
+ set(row,col,val)

- data
RowMajorMatrix

Matrix

+ get(row,col)
+ set(row,col,val)
+ nonZeroElementsIterator()

- data
SparseMatrix

+ getRows()
+ getCols()

- rows
- cols

VirtualMatrix

single
inheritance

multiple
inheritance

Figure 3: VirtualMatrix implements common be-
haviour, while the just-in-time class Matrix combines the
behaviour of all its super classes.

herit the trait of being “something with rows and columns”
from VirtualMatrix. This is a classic class/type hi-
erarchy, found in many programs. Matrix, on the other
hand, combines RowMajorMatrix and SparseMatrix
into a just-in-time class. As a result, we expect instances of
Matrix to support all the methods found in both represen-
tations. In other words, Matrix inherits the behaviour of
both its parents, and this is exactly what multiple inheri-
tance is about. The class/type hierarchy, however, is rather
unconventional because Matrix is unwontedly a subtype
and subclass of its representations. This is the case because
just-in-time inheritance effectively models an “is-a OR is-
a”-relation.3 An instance of Matrix, for instance, behaves
at any point in time as either a RowMajorMatrix or as a
SparseMatrix. Traditionally, however, the “is-a OR is-
a”-relation is modelled as multiple specialisations (i. e., in-
verse of inheritance) of a single class. However, the goal of

3 We revisit the “is-a OR is-a” relation in section 4 when we discuss the
applicability of JitDS.

L(x) = null

(〈vn = x.mn(a) ; stmt, L〉 : S,H, P) −→ (〈Null-Pointer-Exception, L〉 : S,H, P)
R-MI-NPE

L(x) = objId H(objId) = (Cns,Cnd, F)
find-class(P,Cnd) = cdd find-method(cdd,mn) = md md = mn(pn) {stmtB return x; }

L(a) = v Lm = [this 7→ objId][pn 7→ v] S′ = 〈vn = x.mn(a); stmt, L〉 : S
(〈vn = x.mn(a); stmt, L〉 : S,H, P) −→

(
〈stmtBreturn x;, Lm〉 : S′, H, P

) R-MI-DIRECT

L(x) = objId H(objId) = (Cns,Cnd, F) find-class(P,Cnd) = cdd
¬find-method(cdd,mn) transition-path(P,Cns,Cnd,mn) = Cni stmtt =

{
x to Cni;vn = x.mn(a);

}
(〈vn = x.mn(a); stmt, L〉 : S,H, P) −→ (〈stmtt stmt, L〉 : S,H, P)

R-MI-INDIRECT

L(x) = objId H(objId) = (Cns,Cnd, F)
find-class(P,Cnd) = cdd ¬find-method(cdd,mn) ¬transition-path(P,Cns,Cnd,mn)

(〈vn = x.mn(a);stmt, L〉 : S,H, P) −→ (〈Unsupported-Swap-Exception, L〉 : S,H, P)
R-MI-USE

Figure 4: Reduction rules for method invocation.

having a class that supports the combination of behaviour
cannot be realised using the technique of multiple speciali-
sations. This limitation was the driving motivation when de-
signing JitDS.

3.2 Small-step Operational Semantics: Finding a
Method

Just-in-time inheritance is not just a mind experiment to cre-
ate a dynamic and implicit multiple inheritance mechanism.
It has been given an executable implementation and a oper-
ational semantics (see [5]). Here, we focus on a specific part
of the latter: the reduction rules for method invocation. We
focus on method invocation because it is the most important
feature when studying inheritance of behaviour. Figure 4 de-
scribes the method lookup as we define it for just-in-time
inheritance. For completeness, however, we first introduce
the auxiliary functions and constructs needed to understand
the reduction rules.

3.2.1 Auxiliary Functions and Constructs
Foremost, we have a program P which is nothing more
than a collection of class and just-in-time class definitions.
The semantics of such a program is defined in terms of
reduction rules. Such a rule defines the reduction from one
configuration C to another configuration C ′. A configuration
C is a triple containing, from right to left, the program P , a
heap H , and a stack s0 : S, with s0 the top stack frame and
S again a stack. A stack frame is again a pair containing a
sequence of statements and a local store L.4

Further, we make use of some auxiliary constructs and
functions. Local stores (L) map from variable names to ob-
ject identifiers (objId), and heaps (H) map from object iden-

4 In [5], a stack frame is actually a triple. Here, for the sake of simplicity,
we ignore the invocation context, which is of no particular interest in the
discussion on method invocation.

tifiers to objects. An object itself is a triple (Cns,Cnd, F),
with Cns the just-in-time class of the object, Cnd the cur-
rently favoured parent, and F a mapping from field names
to object identifiers (objId). The function find-class looks
for a class definition cd in program P for a given name
Cn. The function find-method looks for a method defini-
tion md in a class definition cd for a given name mn. Fi-
nally, transition-path tries to find a path of representations
(Cni) from the currently favoured parent to another parent
that has an implementation for the method mn. Concretely,
transition-path(P,Cns,Cnd,mn) looks in the program P
for a given just-in-time class Cns, in Cns it looks for a path
Cni, originating in Cnd and ending in a representation class
that has an implementations for the method mn.

3.2.2 Reduction of a Method Invocation
Here, we focus on the reduction of a method invocation,
which has the form vn = x.mn(a);. R-MI-NPE and R-
MI-DIRECT describe the simplest cases: when the receiver
is null and when the method is simply found in the cur-
rently favoured parent, respectively. Concretely, R-MI-NPE
reduces to a null pointer exception configuration, the equiv-
alent of a runtime exception. R-MI-DIRECT looks up and
finds the requested method in the current favoured parent
and executes its body in the context of new stack frame.

However, when the current favoured parent does not
provide an implementation (cf. ¬find-method(cdd,mn) in
R-MI-INDIRECT), then a transition path is computed and
translated into a sequence of swap-statements. Implicitly, the
swap-statements change the favoured parent of the just-in-
time object, and the method invocation can now be reduced
by R-MI-DIRECT. Finally, R-MI-USE describes what hap-
pens if no method implementation (¬find-method(cdd,mn))
and no transition path (¬transition-path(P,Cns,Cnd,mn))
is found: the original configuration is reduced to an exception-

Listing 6: ClosedFile.
1 class ClosedFile {
2
3 var path;
4
5 ClosedFile(path) {
6 this.path = path;
7 }
8
9 getPath() {

10 return this.path;
11 }
12
13 move(newPath) {
14 System.movef(this.path,
15 newPath);
16 this.path = newPath;
17 }
18 }

Listing 7: OpenFile.
1 class OpenFile {
2
3 var path, filePtr;
4
5 getPath() {
6 return this.path;
7 }
8
9 read() {

10 return this.filePtr.readln();
11 }
12
13 write(txt) {
14 this.filePtr.write(txt+"\n");
15 }
16
17 }

Listing 8: LockedFile.
1 class LockedFile {
2
3 var path;
4
5 getPath() {
6 return this.path;
7 }
8
9 lock() {

10 /* do nothing */
11 }
12
13 }

configuration, which is the equivalent of a runtime excep-
tion.

From this fragment of the formal semantics of JitDS it is
clear why the just-in-time inheritance mechanism is dynamic
and implicit. The inheritance mechanism is dynamic because
the method lookup is dependent on the favoured parent of an
object (cf. (Cns,Cnd, F)) and because the favoured parent
Cnd can change at runtime. At the same time, the inheritance
mechanism is implicit because the method lookup strategy
(cf. the combination of R-MI-NPE, R-MI-DIRECT, R-MI-
INDIRECT, and R-MI-USE) is uniform for all objects and
automatically applies the dynamic rule.

4. Applicability of Just-in-Time Inheritance
The core contribution of this paper is to identify just-in-time
inheritance as the first multiple inheritance system that is
both dynamic and implicit at the same time. Just-in-time in-
heritance is by no means the silver bullet to solve all prob-
lems heir to multiple inheritance: it only models the “is-a
OR is-a” relation instead of the “is-a AND is-a” relation that
multiple inheritance is traditionally used for. Hence, just-in-
time inheritance is targeted specifically towards applications
where changing the representation of an object at runtime is
a key functionality.

De Wael et al. [6] identify the need for two kinds of repre-
sentation changes: functional and non-functional representa-
tion changes. Functional representation changes are needed
to realise the intended semantics of a program. In the upcom-
ing File Example, for instance, we model a file with different
modes such as open and closed. Non-functional representa-
tion changes do not change the semantics of a program but
are introduced to realise non-functional requirements. In the
upcoming Matrix Example, for instance, we model a matrix
with different representations where changing between the
representations improves the performance of the program.

The scenarios of the two example programs are in con-
trast to scenarios where multiple inheritance is generally
used for. Multiple inheritance is traditionally used to cre-

ate structural unions of state and behaviour e. g., in the
“PhdStudent extends Employee, Student”- ex-
ample. In contracts, just-in-time inheritance is best used to
model scenarios where the inheritance relation combines
parents that are relatively equivalent.5 This implies that
just-in-time inheritance effectively models an “is-a OR is-
a”-relation. In scenarios where multiple inheritance is used
to compose augmenting parents,5 the more traditional “is-a
AND is-a”-relation is modelled. In these scenarios, just-in-
time inheritance is a less interesting candidate.

Because JitDS relies heavily on representation changes,
it benefits from using the dynamic just-in-time inheritance
mechanism. For a more thorough motivation behind JitDS,
an evaluation in terms of performance, and a discussion of
the language implementation, we refer to our earlier work
(see [5, 6]).

File Example We implement the example from Plaid [23],
here using JitDS. The File Example is an example of a pro-
gram with functional representation changes, i. e., repre-
sentation changes that are needed to realise the intended
semantics of a program. In this example we present the
class File, which inherits functionality from three other
classes ClosedFile (listing 6), OpenFile (listing 7),
and LockedFile (listing 8). All three classes imple-
ment the method getPath. Further, ClosedFile is the
only class that provides functionality for moving a file (cf.
move), OpenFile is the only class that provides function-
ality for reading and writing (cf. read and write), and
LockedFile provides the method lock which does noth-
ing but extending the interface of LockedFile.

The just-in-time class File combines these three classes
(listing 9) and provides three transition functions. The first
two transition functions implement the logic needed to open
and close an actual file (on disk). Opening an actual file re-
lies on System.fopen and closing a file requires the write
buffer to be flushed and the actual file to be closed (flush

5 Terminology by Chambers et al. [4].

Listing 9: The just-in-time class File.
1 class File
2 combines ClosedFile, OpenFile, LockedFile {
3
4 ClosedFile to OpenFile {
5 target.path = source.path;
6 target.filePtr = System.fopen(source.path);
7 }
8
9 OpenFile to ClosedFile {

10 target.path = source.path;
11 source.filePtr.flush();
12 source.filePtr.close();
13 }
14
15 ClosedFile to LockedFile {
16 target.path = source.path;
17 }
18 }

ClosedFileOpenFile LockedFile

Figure 5: The transition graph for the just-in-time class
File from listing 9.

Listing 10: A small example program using File.
1 f = new File("temp.txt");
2 f.write("test123\n");
3 f.lock();
4 f.write("test123\n");

and close). The third transition function is straightforward.
The resulting transition graph is shown in figure 5. Note that
there is no out-edge in LockedFile. This implies that a
just-in-time object of the class File that transitions to the
LockedFile representation, will stay in that representa-
tion forever.

Consider the transcript in listing 10. On line 1, a new file-
object is created. Here, the initial representation does not
need to be specified: it is unambiguously the constructor of
ClosedFile that will be invoked, since the other two file
classes do not provide a constructor. On line 2, a sequence of
characters is written to the file, which succeeds because the
file changes its favoured parent to OpenFile, using the first
transition function. On line 4, the method lock is invoked.
This also succeeds. However, because lock is only sup-
ported for files in the LockedFile representation, the sec-
ond (open to closed) and third (closed to locked) transition
function are executed subsequently. On line 4, again a se-
quence of characters is written to the file. In order to support
I/O operations, the file needs to adhere to the OpenFile
representation, which requires a specialised swap. Issuing a
specialised swap, however, will raise a runtime exception,
since OpenFile is not reachable from LockedFile in
the transition graph (cf. figure 5). Finally, no explicit swap

Listing 11: The just-in-time class Matrix.
1 class Matrix
2 combines RowMajorMatrix, ColMajorMatrix {
3 RowMajorMatrix to ColMajorMatrix { ... }
4 ColMajorMatrix to RowMajorMatrix { ... }
5 }

Listing 12: A small example program using Matrix.
1 mA = loadMatrixFromFile("mat001.txt");
2 mB = loadMatrixFromFile("mat002.txt");
3 mC = multiply(mA, mB);

statements are needed in listing 10 because calling a spe-
cialised method invokes the intended representation changes
implicitly.

Matrix Example The Matrix Example is an example of a
program with non-functional representation changes, i. e.,
representation changes that are not intended to change the
semantics of a program, but that are introduced to realise a
non-functional property. In this program, the representation
changes are introduced to improve the performance of the
application. The Matrix Example uses the class Matrix,
which inherits functionality from the two previously in-
troduced classes RowMajorMatrix and ColMajor-
Matrix (see listing 11), including the two first transition
functions from listing 5, i. e., from “row to col” and from
“col to row”.

Consider the transcript in listing 12. In this simple pro-
gram two matrixes are read from disk (lines 1–2) and are
then multiplied (line 3). The implementation of multiply
is shown in listing 13. The classic matrix-matrix multipli-
cation algorithm is implemented on lines 12–24. The code
on lines 2–10, however, is only added to improve the perfor-
mance of the application. When the matrixes are too large to
fit in the cache, changing the representations of mA and mB
to RowMajorMatrix and ColMajorMatrix, respec-
tively, greatly reduces the execution time due to a signifi-
cant reduction in cache misses [5, 6]. This example formed
the main motivation for designing JitDS, where additional
constructs (swap rules) allow the developer to disentangle
the application logic (lines 13–27) from the representation
changing logic (lines 3–11). In contrast to the file exam-
ple, the representation changes in this example are explicit,
namely on line 7 and line 10. However, for the method in-
vocations of get, set, getRows, and getCols, it is de-
cided implicitly which representation to use.

4.1 Modularity and Design Patterns
Scenarios such as the file and the matrix example would tra-
ditionally be implemented as a single class with modes or

Listing 13: Matrix multiplication.
1 multiply(mA, mB) {
2 /* representation changing logic */
3 sizeA = mA.getRows() * mA.getCols();
4 sizeB = mB.getRows() * mB.getCols();
5
6 if (sizeA > (CACHE_SIZE/2))
7 mA to ColMajorOrder;
8
9 if (sizeB > (CACHE_SIZE/2))

10 mB to RowMajorOrder;
11
12 /* matrix-matrix multiply algorithm */
13 rows = mA.getRows();
14 cols = mB.getCols()
15 mC = new Matrix.RowMajorMatrix(rows, cols);
16 for (row in rows) {
17 for (col in cols) {
18 temp = 0.0
19 for (k in mA.getCols()) {
20 temp += mA.get(row, k) * mB.get(k, col);
21 }
22 mC.set(row, col, temp);
23 }
24 }
25
26 return mC;
27 }

Listing 14: The method read in a class with modes.
1 read() {
2 switch (this.mode) {
3 case CLOSED:
4 this.filePtr = System.fopen(this.path);
5 this.mode = OPEN;
6 break;
7 case LOCKED:
8 throw new Exception("Cannot open locked file.");
9 }

10
11 return this.filePtr.readln();
12 }

using a variation of the strategy pattern6 as they are de-
scribed by Gamma et al. [10]. We now argue that either
technique hampers modularity and requires significant boil-
erplate code.

Implementing a class with modes hampers modularity
because the functionality that used to be expressed in the
different file classes (i. e., ClosedFile, OpenFile, and
LockedFile), now has to be combined into one class with
three modes. This is, by definition, the opposite of modular-
ity. Furthermore, a lot of boilerplate code is needed to check
the current mode and to react accordingly. The implemen-
tation of read, for instance, needs guards expressing that:
when the file is closed it needs to be opened first; and reading
from a locked file is not possible. A possible implementation
of the read method with these guards is given in listing 14.
Similar guards have to be introduced in all methods, i. e., all
methods as they are found in ClosedFile, OpenFile,
and LockedFile.

6 In this context, strategy pattern, state pattern, or bridge pattern can consid-
ered to be similar.

Listing 15: The class ClosedFile with an extended inter-
face compared to listing 6.
1 class ClosedFile {
2
3 var path;
4
5 ClosedFile(path) { this.path = path;}
6
7 getPath() { return this.path;}
8
9 move(newPath) {

10 System.movef(this.path, newPath);
11 this.path = newPath;
12 }
13
14 read() { throw new Exception(); }
15 write(txt) { throw new Exception(); }
16 lock() { throw new Exception(); }
17 }

Checking for the mode of an object and changing the be-
haviour accordingly (e. g., the switch statement in listing 14)
is considered to be a bad smell. To resolve this particular
bad smell, Fowler [9] suggests the Replace Type Code with
State/Strategy refactoring.

Realising a just-in-time class with the strategy pattern,
however, also requires a lot of boilerplate code. In the clas-
sic strategy pattern, the changeable strategy classes adhere
to the exact same interface. The representations of a just-
in-time class, however, can have partially diverging inter-
faces (e. g., nonZeroElementIterator in Sparse-
Matrix). To cope with this issue, one could extend the
original representation classes to match the unified interface
(i. e., the union of the interfaces of all representation classes).
The methods that where previously unsupported could, for
instance, be implemented by stubs that throw an exception.
Listing 15 shows such an adaptation for the ClosedFile
class. This, however, reduces modularity again.

One of the current implementations of JitDS [5, Chap-
ter 7.3] is a JitDS-to-Java transpiler, which translates just-
in-time classes into simple classes with strategies/state. Of
course the transpiler takes care of generating the boilerplate
code, which then no longer has to be written by the devel-
oper. This also improves modularity because the representa-
tion classes do not need to be aware of each other.

5. Related Work
In JitDS, the feature lookup in the hierarchy chain is dy-
namic because it effectively supports a restricted form of dy-
namic object reclassification, called homomorphic reclassifi-
cation [6]. In this context, JitDS is related to other languages
with support for dynamic object reclassification. These in-
clude, but are not limited to: Smalltalk, where any object can
become (a become: b) any other object [11]; Self, where
it is possible to dynamically update the parent pointer(s) and
to re-order their priority [4]; FickleII , which is a language
specifically designed to support dynamic object reclassifica-

tion [7]; and Plaid, which is a typestate-oriented program-
ming language [23].

Smalltalk does not support multiple inheritance. Self does
support multiple inheritance and introduces prioritised mul-
tiple inheritance, which puts the responsibility for resolving
ambiguity explicitly with the developer.

FickleII and Plaid are, w.r.t. motivation, the two pro-
gramming languages with the most resemblance to JitDS.
Both FickleII and Plaid support (functional) representation
changes. However, in these programming languages, the re-
lation between the different representations of an ADT is
modelled as a sub-type relation and thus no multiple inheri-
tance is needed. In JitDS, this relation is modelled as a super-
type relation, hence the discussion on multiple inheritance.
The difference in approach stems from the fact that Plaid
and Fickle aim to support functional representation changes,
whereas the focus of JitDS lays with non-functional repre-
sentation changes.

The idea of non-functional representation changes itself
is also not new. Bolz et al. [2], for instance, implemented a
PyPy interpreter where the implementation of a collection
can implicitly change at runtime to improve performance
(storage strategies). Efforts with a similar motivation as stor-
age strategies include [16, 21, 24, 26]. The examples de-
scribed in these papers are typical scenarios where the “is-a
OR is-a”-relation could be a good fit.

In the context of multiple inheritance all the languages
used as examples in section 2 are related work [1, 8, 14, 17,
25]. Other approaches exist where method resolution is dy-
namically decided. Context-oriented programming (COP),
for instance, identifies that contemporary method lookup
mechanisms can be as complex as four dimensional and
effectively allow any computable property (the “current
context”, cf. the fourth dimension) to have an influence on
method resolution [13].

6. Conclusion
Many techniques exist to mitigate the ambiguity that arises
when inheriting from multiple classes at the same time. Most
of these techniques define the lookup behaviour statically
and only a few languages allow the developer to change the
lookup behaviour at runtime. None of the proposed solu-
tions are both dynamic and implicit. In this paper, we in-
troduce just-in-time inheritance, which is the first inherently
dynamic ambiguity resolution mechanism that does not rely
on explicit programmer intervention, but that handles all in-
vocations automatically and uniformly. The key idea behind
just-in-time inheritance is the “favoured parent”, which re-
duces the possibility of ambiguity by changing the lookup
hierarchy at runtime. In terms of applicability, we conclude
that just-in-time inheritance is not a general solution to the
ambiguity introduced by multiple inheritance, but excels at
modelling the “is-a OR is-a”-relation.

Acknowledgments
The work in this text is supported by a research grant of IWT
(Innovation through Science and Technology, Flanders).

References
[1] K. Barrett, B. Cassels, P. Haahr, D. A. Moon, K. Playford, and

P. T. Withington. A Monotonic Superclass Linearization for
Dylan. In Proceedings of the Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOP-
SLA ’96, pages 69–82, 1996.

[2] C. F. Bolz, L. Diekmann, and L. Tratt. Storage Strategies for
Collections in Dynamically Typed Languages. In Proceedings
of the Conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’13, pages 167–182,
2013.

[3] T. A. Cargill. The Evolution of C++. chapter The Case
Against Multiple Inheritance in C++, pages 101–109. MIT
Press, Cambridge, MA, USA, 1993. ISBN 0-262-73107-x.

[4] C. Chambers, D. Ungar, B.-W. Chang, and U. Hlzle. Parents
are shared parts of objects: Inheritance and encapsulation in
self. In LISP and Symbolic Computation, pages 207–222,
1991.

[5] M. De Wael. Just-in-Time Data Structures. PhD thesis, Vrije
Universiteit Brussel, Belgium, May 2016.

[6] M. De Wael, S. Marr, J. De Koster, J. B. Sartor, and
W. De Meuter. Just-in-time Data Structures. In Proceedings of
the International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! ’15,
pages 61–75, 2015.

[7] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. More dynamic object reclassification: Fickle(ii).
ACM Transactions on Programming Languages and Systems
(TOPLAS), 24:153–191, 2002.

[8] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1990. ISBN 0-201-51459-1.

[9] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Boston, MA, USA, 1999. ISBN 0-
201-48567-2.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Soft-
ware. Addison-Wesley Longman Publishing Co., Inc., 1995.
ISBN 0-201-63361-2.

[11] A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1983. ISBN 0-201-11371-6.

[12] J. Gosling, B. Joy, and G. L. Steele. The Java Language
Specification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1996. ISBN 0201634511.

[13] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
Oriented Programming. Journal of Object Technology,
March-April 2008, ETH Zurich, 7(3):125–151, 2008.

[14] R. Howard. The Eiffel Programming Language. Dr. Dobb’s
Journal, 18(11):68–73, October 1993. ISSN 1044-789X.

[15] T. Jones, M. Homer, J. Noble, and K. Bruce. Object In-
heritance Without Classes. In Proceedings of the European
Conference on Object-Oriented Programming, volume 56 of
ECOOP ’16, pages 13:1–13:26. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016. ISBN 978-3-95977-014-9.

[16] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy:
Effective selection of data structures. In Proceedings of the
Conference on Programming Language Design and Imple-
mentation, PLDI ’11, pages 86–97, 2011.

[17] G. Kiczales and J. D. Rivieres. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991. ISBN
0262111586.

[18] H. Lieberman, L. Stein, and D. Ungar. Treaty of Orlando. In
Addendum to the Proceedings of the Conference on Object-
Oriented programming, systems, languages, and applications,
OOPSLA ’87, pages 43–44, 1987.

[19] Y. Minsky, A. Madhavapeddy, and J. Hickey. Real World
OCaml. O’Reilly Media, 2013. ISBN 978-1449323912.

[20] M. Odersky and Others. The Scala Language Specification.
2004. URL http://www.scala-lang.org/docu/
files/ScalaReference.pdf.

[21] O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive
Selection of Collections. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI)
’09, pages 408–418, 2009.

[22] G. L. Steele, Jr. Common LISP: The Language (2Nd Ed.).
Digital Press, Newton, MA, USA, 1990. ISBN 1-55558-041-
6.

[23] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and E. Tan-
ter. First-class State Change in Plaid. In Proceedings of
the Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’11, pages 713–732,
2011.

[24] V. Ureche, A. Biboudis, Y. Smaragdakis, and M. Odersky. Au-
tomating ad hoc data representation transformations. Tech-
nical report, EPFL, 2015. URL http://infoscience.
epfl.ch/record/207050.

[25] G. van Rossum. The Python Language Reference. Technical
report, 1990-2015.

[26] G. H. Xu. Coco: Sound and adaptive replacement of java
collections. In Proceedings of the European Conference
on Object-Oriented Programming, ECOOP ’13, pages 1–26,
2013.

