
17

Chocola: Composable Concurrency Language

JANWILLEM SWALENS, JOERI DE KOSTER, and WOLFGANG DE MEUTER,
Vrije Universiteit Brussel, Belgium

Programmers often combine different concurrency models in a single program, in each part of the program

using the model that fits best. Many programming languages, such as Clojure, Scala, and Java, cater to this

need by supporting different concurrency models. However, existing programming languages often combine

concurrency models in an ad hoc way, and the semantics of the combinations are not always well defined.

This article studies the combination of three concurrency models: futures, transactions, and actors. We

show that a naive combination of these models invalidates the guarantees they normally provide, thereby

breaking the assumptions of programmers. Hence, we present Chocola: a unified language of futures, trans-

actions, and actors that maintains the guarantees of all three models wherever possible, even when they are

combined.

We describe and formalize the semantics of this language and prove the guarantees it provides. We also

provide an implementation as an extension of Clojure and demonstrated that it can improve the performance

of three benchmark applications for relatively little effort from the developer.

CCS Concepts: • Software and its engineering→ Parallel programming languages; Concurrent pro-

gramming languages; Multiparadigm languages; Concurrent programming structures;

Additional Key Words and Phrases: Futures, software transactional memory, actor model

ACM Reference Format:

Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. 2021. Chocola: Composable Concurrency Lan-

guage. ACM Trans. Program. Lang. Syst. 42, 4, Article 17 (January 2021), 56 pages.

https://doi.org/10.1145/3427201

1 INTRODUCTION

Since the introduction of multicore processors, concurrency and parallelism have become essential
aspects of software development. However, programmingwith concurrency is notoriously difficult
[23, 39, 46]. Over the years, a plethora of concurrency models have been invented, including locks
and semaphores [22], futures [5], Communicating Sequential Processes [38], actors [1], and trans-
actions [32, 54]. A concurrency model provides constructs to introduce parallelism in a program.
At the same time, it imposes restrictions on the program to provide guarantees to the programmer
that prevent common errors. For example, the actor model introduces actors that carry out com-
putations in parallel, but it requires that data is shared only using messages, thereby preventing
low-level data races.

Authors’ address: J. Swalens, J. De Koster, andW. DeMeuter, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium;

emails: {janwillem.swalens, joeri.de.koster, wolfgang.de.meuter}@vub.be.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2021/01-ART17 $15.00

https://doi.org/10.1145/3427201

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://doi.org/10.1145/3427201
https://doi.org/10.1145/3427201

17:2 J. Swalens et al.

Fig. 1. Tasharofi et al. [60] found that, out of 15 Scala projects that use actors, 12 combine them with futures
and/or threads.

Today, several of these concurrency models have found their way into modern mainstream
programming languages and frameworks. These often support many different models. For in-
stance, Clojure provides six different concurrency models: futures, promises, atomic variables,
transactional memory, channels, and agents; Java supports threads, locks, atomic variables, fu-
tures, promises, Fork/Join, and parallel collections; and Haskell supports threads, locks, atomic
variables, transactions, and channels.

Tasharofi et al. [60] have shown that developers often combine multiple models in a single pro-

gram: In a sample of 15 GitHub projects in Scala that use the actor model, 12 combined it with
another model (illustrated in Figure 1). Eight out of 15 programs used actors and futures and 10
out of 15 programs used actors and threads, including 6 that used all three models. Only 3 out of
the 15 programs used only actors.
While programming languages allow their concurrency models to be mixed freely by the de-

veloper, and developers do this in practice, unfortunately, doing so correctly is far from trivial.
Programming languages often integrate concurrency models in an ad hoc way and the semantics
of their combination is not always well defined. We observe that when the language constructs
of different concurrency models are combined, their original guarantees are often invalidated. In a
case study of Clojure [58], we found several such cases. For instance, when a message is sent to a
channel in a transaction, and the transaction rolls back, the message is not retracted.
We argue that the combination of multiple concurrency models must be carefully considered.

Most concurrency models fall into one of three categories: deterministic, shared-memory, and
message-passing models [61]. In this article, we present Chocola (for composable concurrency
language), a programming language that integrates three concurrency models, one from each cat-
egory: futures, transactions, and actors.1

The goal of Chocola is to combine these three models and maintain the guarantees of each
model wherever possible. We have two requirements. First, when used separately, the semantics
of each model should remain unchanged, ensuring backwards compatibility. Second, when models
are combined, we seek a semantics for their combination that maintains each model’s guarantees.
When this is impossible, we replace the original guarantee with a (slightly) less restrictive one.

In this article, we first describe the three concurrency models we studied separately (Section 2).
Next, we motivate why it is desirable to combine concurrency models (Section 3) and define the re-
quirements for such a combination (Section 4). Then, we examine each pairwise combination: We
describe the problems that appear and create a semantics that satisfies the requirements, thereby
defining transactional futures (Section 5), transactional actors (Section 6), and futures for intra-
actor parallelism (Section 7). We consolidate these three partial solutions into Chocola and demon-
strate it with an example (Section 8). Afterwards, we formalize Chocola’s semantics and prove its
guarantees (Section 9). We present an implementation as an extension of Clojure (Section 10) and
evaluate its performance and expressivity using three benchmark applications (Section 11).

1Chocola is available online at http://soft.vub.ac.be/~jswalens/chocola and https://github.com/jswalens/chocolalib.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

http://soft.vub.ac.be/~jswalens/chocola
https://github.com/jswalens/chocolalib

Chocola: Composable Concurrency Language 17:3

Fig. 2. The relations between the languages presented in the following sections.

2 BACKGROUND: FUTURES, TRANSACTIONS, AND ACTORS

In this section, we describe the three models we studied: futures (Section 2.1), transactions (Sec-
tion 2.2), and actors (Section 2.3). We illustrate each model building up towards an example that
combines all three: a holiday reservation system that books flights, hotels, and cars.
We formalize the semantics of each model in separate languages: Lf for futures, Lt for transac-

tions, and La for actors. These are built on top of a base language Lb, as illustrated in Figure 2. We

list the guarantees of each model, illustrated throughout the text with boxes like Det , and formal-
ize them. Note that we will not prove the guarantees of the separate models in this section, instead
we will prove the guarantees of our unified language Chocola in Section 9 and the appendices.

In practice, Chocola extends Clojure, a Lisp-like language that runs on top of Java and supports
futures and transactions.2 In the formalization, Lb is a (very small) subset of Clojure, without its
support for futures or transactions. The languages Lf and Lt model Clojure’s support for futures
and transactions, respectively. We also extended Clojure with support for actors, formalized in La.

2.1 Futures

A parallel task (or thread) is a fragment of the program that can be executed in parallel with
the rest of the program. A run-time system schedules tasks over the available processing units
(cores or processors). A parallel task is created using the expression (fork e), which begins the
evaluation of the expression e in a new task, and immediately returns a future.3 A future is a
placeholder variable that represents the result of a concurrent computation [5, 31]. Initially, the
future is unresolved. Once the parallel evaluation of e yields a value v, we say the future is
resolved to v. Other tasks can retrieve this result by calling (join f). If the future is resolved,
this returns its value immediately; if the future is still unresolved, this call blocks until it is resolved
and then returns its value.
The following example defines a function parallel-filter to filter a list xs using a function f:

This function first uses Clojure’s partition function to partition the list into 8 parts. On line 3,
we fork a future for each part, which uses Clojure’s built-in sequential filter function to filter
its part. The syntax (fn [x] e) defines an anonymous (lambda) function. On line 4 these futures
are joined, and line 5 concatenates their results. This example can therefore exploit up to 8 cores.

2https://clojure.org.
3Clojure implements futures as described here except for some syntactical differences, and Scala and Haskell offer similar

constructs: (fork e) is (future e) in Clojure, Future { e } in Scala, and forkIO e in Haskell. We aim to approximate

these languages closely to demonstrate how the problems we describe also apply to them.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://clojure.org.

17:4 J. Swalens et al.

Fig. 3. Operational semantics of Lf , a language with futures.

2.1.1 Guarantee: Determinacy. Futures guarantee determinacy Det : For a given input, a pro-

gram always produces the same output.4 This means that a program’s result does not depend on
the order in which its tasks are interleaved. Futures are commonly used to parallelize homoge-
nous operations over lists, e.g., searching and sorting [31], as in the example above. In these cases,
determinacy is often desired, as the end result should not depend on how tasks are scheduled.

2.1.2 Formalization of Operational Semantics. Figure 3 defines Lf : an extension of the base lan-
guage that supports parallel tasks and futures. This formalism is based on the work of Flanagan
and Felleisen [25] and Welc et al. [65]. We describe the operational semantics piece by piece.

Syntax. The syntax consists of the base language—supporting function application (e e), condi-
tionals (if), local variables (let), and blocks (do)—futures, and the expressions fork and join.5

State. A program’s state p is a set of tasks. A task is a tuple containing the future that represents
its final value and the expression it is currently evaluating. The future f associated with each task
is unique and can therefore be used an identifier for the task. To kickstart evaluation, a program e

is converted into the initial state {〈f0, e〉}, i.e., it contains one “root” task that executes e.

Evaluation contexts. Evaluation contexts define the evaluation order within expressions. In the
program evaluation context P, an arbitrary task in which a reduction is possible can be chosen;
this models that a parallel execution of the program can interleave different tasks in any order. E
is an expression with a “hole �.” We write E[e] for the expression obtained by replacing the hole
� with e in E. In every reduction rule, we highlight the reduced expression in blue.

Reduction rules. We define the operational semantics of Lf using transitions p→f p′.
The rule congruence|f defines that the base language can be used in each task. Transitions in

the base language are written e →b e′. They define a standard functional calculus and are fully
listed in Appendix B.2.

4This is sometimes called observable determinism. Some literature, such as Denning andDennis [21], distinguishes between

determinism, which requires that the tasks are interleaved in the same way for each execution, and determinacy, which

requires only the same output for a given input. We are concerned with determinacy, not determinism.
5While our syntax uses S-expressions, we will not repeat the parentheses in every rule.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:5

The rule fork|f specifies that the expression fork e creates a new task inwhich e will be evaluated
and reduces to a freshly created future f∗. After the expression e has been fully reduced to a valuev ,
join f∗ will reduce to v . A task can be joined multiple times; each join reduces to the same value.
A join can be resolved by the rule join|f only if the corresponding task has been fully reduced to a
value; this detail encodes the blocking nature of our futures.

2.1.3 Formalization of Determinacy. Intuitively, determinacy means that different evaluations
of a program might take different steps during the reduction, but eventually they will all lead to
equivalent end results. We first define equivalence.

Definition 2.1 (Equivalence �). Our operational semantics generates identifiers in several places:
variables (x) and futures (f) in this section, but also transactions (n), transactional variables (r), and
actors (a) in the following sections. We say that the two states p1 and p2 are equivalent, written
p1 � p2, if there exists a renaming of these identifiers such that p1 = p2.

Theorem 2.2 (Determinacy). If p0 →
∗ p1 and p0 →

∗ p2 with p1 and p2 final states, then

p1 � p2.

In the special case where this theorem is applied to the first state of a program, i.e., p0 = {〈f0, e〉}
for any program e, it proves determinacy of the whole program.

2.2 Transactions

Software Transactional Memory (STM) is a concurrency model that allows parallel tasks to access
shared memory locations [32, 35, 54]. Each shared memory location is encapsulated in a transac-

tional variable, which is created using (ref v)with initial value v. Access to shared memory can
occur only in a transaction: a block of code (atomic e) in which transactional variables can be
read using (deref r) and modified using (ref-set r v). A transaction reads a consistent snap-
shot of the shared memory, and furthermore, the intermediate states of a transaction cannot be
observed outside the transaction. STM is implemented in Clojure and in Haskell’s GHC compiler
[34]. Chocola re-uses Clojure’s implementation, explained by Halloway [30].
The code below implements a flight reservation system using transactions. Line 1 defines

a flight as a mapping of certain symbols (prefixed with a colon) to the corresponding value,
encapsulated in a transactional variable. Line 7 contains a transaction that reserves three seats on
this flight, by reading the flight and updating its number of available seats.6 Encapsulating this in
a transaction prevents race conditions: All refs modified in a transaction are updated atomically
when the transaction commits.

In contrast to locks, which are said to be pessimistic, STM is ‘‘optimistic’’ [33]: The code in a
transaction is immediately executed. When different transactions access the same transactional
variable(s), a conflict occurs and the transaction will abort. An aborted transaction is retried,

6Clojure’s get retrieves a key from a mapping. assoc updates a key, but because Clojure uses immutable data structures,

it does not update the flight map in place, but returns a new map new-flight. The flight must be updated explicitly to this

value using ref-set.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:6 J. Swalens et al.

which means that its changes are discarded (rolled back) and its contents are reexecuted. A trans-
action thus executes one or several attempts. When no conflicts occur, a transaction commits

successfully and its changes become visible to other transactions.

2.2.1 Guarantees: Isolation and Progress. Transactional systems provide two useful guarantees.
First, transactions run in isolation. Different isolation ‘‘levels’’ have been defined, such as serial-

izability [35], opacity [28], and snapshot isolation [9]. Like Clojure, we provide snapshot isolation.

Snapshot isolation SI requires that (1) a transaction sees a consistent view of the memory
(this is its snapshot), and (2) a transaction can commit only if none of its updates conflict with any
concurrent updates made since the snapshot. In the example, this entails that (1) the values of the
flight variable on lines 4 and 5 must be equal, even if another thread modified them concurrently,
and (2) two transactions cannot reserve seats on the same flight on line 6. Thanks to isolation, de-
velopers can reason about the program at the level of transactions: While transactions execute in
parallel, it does not matter in which order their constituent instructions are interleaved, only in
which order the transactions as a whole are committed.

Second, transactional systems provide a progress guarantee. While traditional locking systems
are prone to issues such as deadlocks, livelocks, and starvation, transactional systems aim to free
the programmer from worrying about these issues. Similar to isolation levels, different STMs im-
plement a range of different progress guarantees. Many systems guarantee deadlock freedom

DLF [33]: When two transactions conflict, progress is guaranteed by a mechanism that decides
which transaction(s) to delay so another can make progress.

2.2.2 Implementation. Like Clojure, we implement STM using multiversion concurrency con-
trol (MVCC) [10, 30, 36]. Each transactional variable contains a (limited) history of its values. Dur-
ing a transaction, reading a transactional variable returns the value it had when the transaction
started. Writing to a transactional variable stores its new value locally in the transaction. At the
end of the transaction, it attempts to commit, and if successful the new values atomically become
visible for new transactions. The commit is unsuccessful when two transactions wrote to the same
variable: We say a conflict occurred on that variable. Then, the most recent transaction is aborted,
i.e., it discards its changes and retries. We refer to the related literature for more details [30, 36].

2.2.3 Formalization of Operational Semantics. Figure 4 defines Lt, a language with transactions.
Lt extends Lf : As STM does not provide any constructs to create parallel tasks, it must rely on
futures to create the tasks in which transactions run.
The formal semantics describes an algorithm that is simpler than MVCC. It guarantees snap-

shot isolation in a trivial way, by making a complete copy of the transactional memory when a
transaction is started. The actual implementation uses MVCC and provides the same guarantee,
but avoids creating copies, by versioning of transactional variables and taking locks.

Syntax. The syntax adds the elements described above. Additionally, we add the construct
atomic� e: this runtime expression cannot be used by the programmer in the source program,
but we will use it in the reduction rules to represent a transaction that is being executed.

State. The program state, previously a set of tasks T, is extended with a map of transactions
τ and the transactional heap σ . Each transaction in the map τ is identified using a transaction
number n, and consists of:

• ◦: its status, initially � (running) and resolving to either � (committed) or × (aborted).
• σ : its snapshot of the heap, copied when the transaction started and never modified. This
provides a consistent view of the transactional memory during the transaction.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:7

Fig. 4. Operational semantics of Lt, a language with transactions.

• e: its original expression, which is copiedwhen the transaction starts. If the transaction aborts,
this is restored.
• δ : its local store, consisting of the new values of modified transactional variables. The domain
of δ is referred to as the transaction’s write set.

Tasks are extended with an optional number n that identifies the active transaction. If no transac-
tion is active, this is •. (Throughout our formalization, we use the question mark as meta-syntax
to indicate an optional element, i.e., n? � n | •.) In practice this is implemented as a thread-local
variable. Throughout its lifetime, a task can execute different transactions, but each transaction
belongs to only one task.
Next, we define the reduction relation→t for Lt.

Start of transaction. The rule atomic|t starts a new transaction. A (globally unique) new trans-
action number is stored in the current task, and the new transaction is added to τ . atomic e is
replaced with atomic� e, so in the following transitions e is reduced. This will always eventually
reduce to a single value, atomic�v , at which point the transaction is ready to commit and one of

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:8 J. Swalens et al.

the commit rules below can be applied. The rule atomictx|t corresponds to the “closed nesting” of
transactions [51], discussed in Section 4.2.

Transactional operations. ref, deref, and ref-set, respectively, create, read from, and write to
transactional variables, using the snapshot and local store. Transactional variables created using
ref remain local to the transaction until it is committed. In deref, a consistent view of the transac-
tional memory is ensured, as the snapshot is a copy of the heap made when the transaction started.
(The operator :: concatenates two maps and is right-preferential; it is defined in Appendix B.5.)

Commit. A transaction commits successfully if none of the transactional variables in its write
set have been modified by another transaction since the start of this transaction.
If this validation succeeds, the transaction can commit (commit� |t): Its changes are written to

the transactional memory by appending its local store to the heap. This occurs in a single step,
ensuring that the changes atomically become visible to the other tasks.
If the validation fails, the transaction rolls back and retries (commit×|t). The transaction is

marked as failed and the task is restored to its state before the transaction started, using e. In
the next transition, the rule atomic|t is applicable and restarts the transaction. Note that different
attempts of the same transaction have different numbers, so in fact n identifies the attempt and
not the transaction.7

2.2.4 Formalization of Snapshot Isolation. A program’s reduction can be distilled into a transac-
tional history. Like Berenson et al. [9], we define snapshot isolation as the absence of five anomalies:
patterns that may not appear in the transactional history.

Definition 2.3 (Transactional History). A program’s transactional history is the sequence of
the transactional operations in the program’s execution. The following transactional operations
can occur, each corresponding to a specific reduction rule:

• x →1 v : transaction 1 reads transactional variable x , retrieving the value v (rule deref|t).
• x ←1 v : transaction 1 writes the value v to transactional variable x (rule ref-set|t).
• �1: transaction 1 commits successfully (rule commit� |t).
• ×1: transaction 1 aborts (rule commit×|t).

A program reduction can be converted into a transactional history by listing the transactional
operations that correspond to these reduction rules. Note that aborted transactions are part of
the program’s history, too: Even in a transaction that will eventually abort, we expect to get a
consistent view of the memory (not doing so may for instance trigger unexpected errors [28]). We
also note that a transaction attempt cannot both commit successfully and abort (i.e., only one of
�n or ×n appears for any n), and that this is the last operation for the attempt (i.e., all→n and←n

must precede �n or ×n).

Theorem 2.4 (Snapshot Isolation). Lt provides snapshot isolation, i.e., the transactional history

of any program reduction does not contain dirty reads, dirty writes, non-repeatable reads, lost updates,

or read skew.

Each anomaly is defined using a transactional history pattern in Appendix D.

2.2.5 Formal Discussion of Deadlock Freedom. To discuss the issue of deadlocks between trans-
actions, we need to differentiate between the algorithm implemented by the formal semantics and
the one used in the practical implementation. In the operational semantics, transactional variables

7Although not necessary here, we keep failed transaction attempts in the program state; these will prove useful later.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:9

are not locked, instead the commit rules simply check and perform all writes to the transactional
memory in a single transition. Deadlocks are therefore impossible. In the practical implementation,
we implement STM using the Multiversion Concurrency Control algorithm, which guarantees
deadlock freedom [36]. Deadlock freedom of transactions ensures that, when two transactions
conflict, one is delayed so another can make progress [33]. This guarantee is a property of the
implementation algorithm; it is not visible in the semantics.

2.3 Actors

In the actor model, actors run concurrently and communicate using asynchronous messages
[1, 37]. In Chocola, we use a “classic actors” model [20], in which an actor consists of three
elements. First, each actor has a unique and immutable address, used to send it messages. Second,
its inbox is a queue of messages. In our model, a message is simply a tuple of values. Third, a be-

havior specifies how an actor responds to a message. In Chocola, a behavior is defined as follows:8

This behavior specifies an actor that represents a travel agent. Other actors can send a message
to this actor to book a holiday, consisting of a flight and a hotel room. The behavior of an actor
defines how it responds to an incoming message. It first contains a list of parameters that define
the internal memory of the actor: here, maps containing the flights and hotels. Second,
it contains a list of patterns for incoming messages and the corresponding response. Here,
there is only one pattern, matching a message that starts with the symbol :book followed by
three values, which are bound to the variables orig, dest, and n. Actors are spawned using spawn:

This creates a new actor with travel-agent-behavior as initial behavior and the maps of
flights and hotels as internal memory. spawn returns the address of the new actor.
(send agent :book "LHR" "BOS" 3) puts a message in this actor’s inbox, containing the val-

ues :book, "LHR", "BOS", and 3. When the receiving actor processes the message, the pattern on
line 3 is matched, and hence the code on lines 4 to 8 is executed with flights and hotels bound
to the values given when the actor was spawned and orig, dest, and n bound to the message’s
values.

An actor can change its behavior and internal memory using become. On line 8 in the example,
become updates the agent actor, keeping its behavior identical but updating its internal memory
to new maps of flights and hotels in which the requested reservations were made.

8Because Clojure’s data structures are immutable, reserve-seats and reserve-room do not modify flights and hotels,
but instead return updated data structures.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:10 J. Swalens et al.

Fig. 5. Operational semantics of La, a language with actors.

An actor alternates between two states: ready to accept a message or busy processing a message.
A turn is the processing of a single message by an actor, that is, the process of an actor taking a
message from its inbox and processing that message to completion [20].

2.3.1 Guarantee: Isolated Turn Principle. The actor model guarantees the isolated turn princi-

ple, which states that once a turn has started, it will always run to completion, in isolation [18, 20].
Hence, developers do not need to care how individual instructions within a turn are interleaved
with those from other actors; instead, they can reason about their program at the level of turns.

De Koster [18] defines the isolated turn principle as a combination of three guarantees:

Continuous message processing Cont Deadlocks cannot occur while processing a single
message, i.e., turns are free from deadlocks.

Consecutive message processing Cons An actor processes messages only from its own in-
box and processes them one by one. Hence, within one actor different turns cannot be
interleaved.

Isolation Iso Memory is isolated: An actor can access only its own memory. Actor systems
usually achieve this by disallowing shared mutable state between actors. Hence, turns are
free from low-level data races.

2.3.2 Formalization of Operational Semantics. Figure 5 defines the actor language La and cor-
responding reduction relation→a. This language extends the base language and is based on the
work of Agha et al. [2].

Syntax. La introduces two new values. First, an address is a unique reference to an actor. Sec-
ond, a behavior definition specifies how an actor processes its messages. It first lists a number of

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:11

variables xbeh that are internal to the actor. In this formal semantics, we elide the pattern matching
functionality of our language; instead, we suppose that each behavior definition contains only one
pattern that consists of a list of parameters xmsg and a corresponding expression. The expression
is thus parameterized by xbeh (internal memory of actor, set using spawn and become) and xmsg

(message parameters, bound when a message is received).

State. The state of a program is represented as the actors A and their inboxes μ. There is one
inbox per actor. An inbox is a list of messages, where each message simply contains its arguments.
An actor consists of three elements: its unique address, the expression it is currently reducing (or
• between turns, when the actor is idle), and its current behavior.
Note the distinction between a behavior and a behavior definition. A behavior definition b is a

syntactical element that specifies the code that an actor executes. In contrast, a behavior beh is a
runtime element that consists of such a behavior definition and the values for xbeh. We call these
values the internal memory of the actor.

Reduction rules. →a defines the reduction relation for La. Using the rule congruence|a, the base
language can be used in any actor. The rule spawn|a adds a new idle actor to A, with a unique
address and with its behavior initialized as given. The rule send|a simply appends a message to the
end of the receiver’s inbox.
The rule receive|a specifies that when an actor is idle and there is a message in its inbox, it can

start a turn. The expression encapsulated in its current behavior definition (e) will be evaluated,
with the first list of parameters xbeh bound to the actor’s internal memory and the second list of
parameters xmsg bound to the message’s arguments (as specified in the auxiliary function bind).
After the rule receive|a has evaluated, the expression in the actor will be further reduced. Even-

tually, this will result in a single value, at which point the rule turn-end|a triggers. This rule resets
the actor to its idle state. If there are more messages in the actor’s inbox, another turn can start. In
this semantics, messages are always processed in the order they were received.
Last, the rule become|a updates the behavior and internal memory of the current actor. As in

the actor model of Agha et al. [2], the state of an actor can be changed only using become. Note
that these changes will take effect only in the next turn.
We note that in these rules, actors are never removed. This entails the receiver of send will

always exist. Once no more references exist to an actor and it has processed all its messages, it will
stay idle forever. It can be garbage collected safely, but this is not implemented in our reduction
rules.

2.3.3 Formalization of Guarantees. We formalize the isolated turn principle as a combination
of its three constituent guarantees.

Definition 2.5 (Deadlock). A set of actors is deadlocked if each actor in the set is waiting for an
event that only another actor in the set can cause [59].

Lemma 2.6 (Continuous Message Processing). While an actor processes a turn, it cannot be

deadlocked.

Lemma 2.7 (Consecutive Message Processing). For each actor, at each step in the reduction at

most one turn is active.

Lemma 2.8 (Isolation). Memory is isolated: Each variable in memory can be read and written

only by one actor.

Theorem 2.9 (Isolated Turn Principle). La provides the isolated turn principle, i.e., it guaran-

tees continuous message processing, consecutive message processing, and isolation.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:12 J. Swalens et al.

3 MOTIVATIONS FOR COMBINING CONCURRENCY MODELS

We motivate why it is desirable to combine concurrency models based on three observations.

Observation 1: Existing applications combine multiple concurrency models. Tasharofi et al. [60]
studied 15 large, mature, and actively maintained Scala projects that use the actor model. We sum-
marize three observations from this study (illustrated in Figure 1). First, 8 of the 15 applications
(53%) combine actors and futures. Here, a future is used to represent the ‘‘return value’’ of an asyn-
chronous message sent to an actor. This pattern is a common combination of actors and futures,
supported by Scala [52, Chapter 4] but dating as far back as ABCL [66]. Second, 10 of the 15 applica-
tions (67%) combine actors with Scala’s Runnable, a form of threads. Contact with the developers
of these programs established several reasons for doing so: finding locks more suitable than asyn-
chronous messages for their use case, the need to reduce overhead, developers’ inexperience with
actors, legacy code, or personal preference. Third, we note that 6 out of the 15 applications (40%)
use actors, futures, and threads, thus combining three concurrency models.
These results are corroborated by a survey on the use of concurrency among Microsoft employ-

ees [27]. In this survey, around 45% of respondents indicated that they combine shared-memory
and message-passing concurrency in their product. These studies thus confirm that developers
choose to use several concurrency models throughout a single program.

Observation 2: Programming languages support multiple concurrency models and allow them to be

combined. Many programming languages and frameworks already support more than one model.
A selection is shown in the table in Appendix A. Clojure is the best example: It has constructs
for six concurrency models, and, as it is built on top of the JVM, provides access to four more
models. Scala similarly supports eight models: four through its own constructs and four through
the JVM. Other examples are Java (seven models), Haskell (five), and C++ (five). The designers of
these languages evidently consider it necessary to support a smorgasbord of concurrency models.
Moreover, we see that in cases where a language does not have built-in support for a model,

often libraries have been developed. In that case, programmers decide they need to create libraries
to extend the language they use with support for additional models.
In almost all of these examples, the languages impose no restrictions on combinations of concur-

rency models and developers can freely mix multiple models in a single program. (Swalens et al.
[58] perform a case study of Clojure.) However, as we will see in the next section, these naive
combinations can break the guarantees of the separate models, potentially introducing bugs even
in code considered ‘‘safe.’’

Observation 3: Complex applications consist of different parts that suit different concurrency models.

Even if many developers combine multiple models and programming languages support this, one
might still wonder whether this is a good idea. We argue it is. Originally, concurrency models were
devised to each address a specific concurrency issue that occurs in a specific scenario. However, a
typical application consists of many different parts, which may each benefit from concurrency. As
each model is aimed at specific types of problems, different parts may need different models, and
thus it is desirable to combine several models.

4 GOAL: A COMBINATION OF CONCURRENCY MODELS THAT MAINTAINS THEIR

GUARANTEES

In this article, we present Chocola, a language that combines futures, actors, and transactions into
a unified model. This section outlines the requirement for this language and presents a running
example. The subsequent Sections 5 to 7 then delve into each pairwise combination in more detail;
these combinations are afterwards consolidated in Section 8.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:13

Fig. 6. Pairwise combinations of the three concurrency models of Chocola and their guarantees. The colors
are explained in Section 4.

Goal. Our goal is to find a suitable semantics for the unified model of futures, actors, and trans-
actions, even when concurrency models are combined. We define two requirements:

(1) First, the semantics of the separate models should remain unchanged, so programs
that do not use combinations work unchanged, ensuring backwards compatibility.

(2) Second, the guarantees of all models should be maintained even when they are com-

bined, whenever possible. Hence, developers can use concurrency models under the same
assumptions in all contexts. In some cases, we will see that it is impossible to combine the
guarantees of all models, because they inherently conflict. For instance, when a non-deter-
ministic model is used in a deterministic one, it is impossible to maintain determinism. In
these cases, we will need to relinquish one of the original guarantees and define a modified,
less restrictive guarantee that can be provided.

Approach. Wefirst study the pairwise combinations of these threemodels (in Sections 5 to 7) and
afterwards combine them into a unifiedmodel (Section 8). To study the problems, for each pairwise
combination, we consider a naive combination of the two models, in which we simply embed the
models as described in Section 2 in each other. We check whether the naive combination breaks
any of the guarantees of its constituent models. If so, we define a modified semantics that satisfies
the requirements outlined above.
We consider the dynamic extent of each construct: If one model is used in another at execution

time, then we say they are nested. This does not necessarily require their constructs to be nested
lexically. For instance, if a library function that uses futures is called in a transaction, then the
construct fork will not appear in the atomic block in the code (lexically), but at execution time

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:14 J. Swalens et al.

a future will be created while a transaction is running (dynamically). In the rest of the article,
whenever we say that two constructs are nested, we refer to dynamic nesting.

Result. Figure 6 tabulates the 9 (3×3) pairwise combinations: Each cell describes how one model
is nested in another. The table summarizes the results presented in the following sections. The
colors indicate which guarantees are valid in a naive combination and in Chocola:

• Guarantees in blue are upheld even in a naive combination. No changes to the semantics
are needed to satisfy our requirements.
• Guarantees in green are broken in a naive combination, so in Chocola, we modify the se-

mantics to reestablish the guarantee.

• Guarantees in red are inevitably broken, in a naive combination as well as in Chocola. This
occurs in two cases and is the result of nesting a non-deterministic in a deterministic model.

• Det ITD indicates that a guarantee (here, determinacy) is broken in a naive combination
and cannot be maintained by Chocola. Instead, we defined a (slightly) less restrictive guar-
antee that can be upheld (here, intratransactional determinacy).

Note that there is a sort of ‘‘anti-symmetry’’ in the table. The diagonal contains models nested
in themselves. These ‘‘trivial’’ combinations all maintain the guarantees and are briefly discussed
in Section 4.2. All other cells have an opposite across the diagonal, e.g., the top-right cell represents
actors in futures, while the bottom-left cell represents futures in actors. In these cells, when dif-

ferent models are combined naively, the guarantees are broken. These pairwise combinations are
discussed in Sections 5, 6, and 7. Afterwards, in Section 8, all three models are unified in Chocola.

4.1 Example: Holiday Reservation System Using Three Concurrency Models

We now present a running example that combines all three models: a holiday reservation system
that books flights, hotels, and cars. It is based on the Vacation benchmark from the STAMP bench-
mark suite [48], which we also use for our evaluation in Section 11. The code is shown in Figure 7.
This program contains several shared data structures, encapsulated in transactional variables

(lines 1–4): flights, hotels, cars, and customers. Each customer record contains the trip’s origin and
destination, and the number of travellers.
The program also contains several types of actors. First, a set of travel agent actors, using

travel-agent-behavior, receive messages from each customer to process their reservations
(lines 35–37). A reservation consists of a transaction in which two flights, a hotel room, and a
car are reserved, and a confirmation code is generated (lines 28–33). For each of the four items, a
message is sent to a set of reservation actors, e.g., airlines with the behavior airline-behavior.
(The hotels and car-rentals actors look similar.)

When an airline actor receives a message to reserve a flight (lines 18–21), it first filters the flights
using the customer’s criteria and then reserves that flight. This is protected using a transaction to
ensure that an item cannot be reserved multiple times. Searching for a flight (lines 6–9) is paral-
lelized using futures (using parallel-filter from Section 2.1).

Thus, this application combines the three models:

• It uses actors to concurrently process requests from different customers and for different
items. A message-passing model naturally matches this use case: Customers that want to
initiate a reservation send a message to an actor in an event-driven way.
• Two sections of the code access shared memory and must therefore be protected using trans-

actions. First, when processing a customer, we must ensure either all items are reserved or

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:15

Fig. 7. Code snippet of a holiday reservation program that combines futures, transactions, and actors.

none (lines 28–33). Second, we must prevent items from being reserved multiple times (lines
19–21). Transactions ensure safe access to shared memory.
• Futures are used to exploit parallelism in deterministic operations, here filtering a list. Futures
guarantee that the output of the filter operation is determinate and thus does not depend on
the order in which threads are scheduled.

With a naive combination of the three concurrency models, this program will not work as ex-
pected, as the guarantees of the separate models no longer hold when they are combined. In Sec-
tions 5, 6, and 7, we examine these problems using this example, and we define the semantics of
Chocola to maintain the desired guarantees.

4.2 Trivial Combinations

We briefly discuss the combinations on the diagonal of Figure 6, in which each model is nested in
itself. These have been studied in existing literature and maintain the model’s guarantees.

Nested futures. Forking one parallel task in another is common in programs that use futures.
Nesting futures does not break the determinacy of the program: No matter where futures are
introduced, the program remains equivalent to the same program without futures [25].

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:16 J. Swalens et al.

Nested actors. Dynamically ‘‘nesting’’ actors simply corresponds to spawning one in another.
This is a standard part of the actor model and maintains the guarantees of actors.

Nested transactions. When a transaction is started while another transaction is already active,
this is a nested transaction. The nesting of transactions is a well-studied problem [33]. Moss and
Hosking [51] distinguish two types of nesting. Open nesting enables better performance, but is
complex to use and breaks the isolation of the outer transaction. Closed nesting is simpler, and in
practice it is the norm: Clojure, Haskell, and ScalaSTM all use it. Chocola therefore does so, too.

5 TRANSACTIONAL FUTURES: PARALLELISM IN TRANSACTIONS

In this section, we study the combination of transactions and futures. We first discuss creating
transactions in futures (Section 5.1), which is common in languages with transactions. Next, we
focus on the opposite combination, the creation of futures in a transaction, and we show that
a naive combination breaks snapshot isolation (Section 5.2). Hence, we introduce transactional

futures: futures created in a transaction with access to the encompassing transaction’s context
(Section 5.3). Transactional futures maintain the snapshot isolation and deadlock freedom of trans-
actions and guarantee intratransactional determinacy. We first described transactional futures in
previous work [56].

5.1 Transactions in Futures for Parallel Transactions

We first focus on the use of transactions in parallel tasks, i.e., the construct atomic within the
dynamic extent of a fork. As the transactional model does not provide any construct to create
parallelism, this combination is standard in languages with transactions: Any use of transactions
requires another model to create the tasks in which they run. The semantics of this combination
was already specified accordingly in Section 2.2 where we defined the language Lt with transac-
tions as an extension of the language Lf with futures.
The question remains whether this combination preserves the guarantees of both models. As

this combination is standard in transactional systems, it guarantees snapshot isolation SI and

deadlock freedom DLF . However, the determinacy of futures is broken Det : A programwith
transactions is equivalent to a serialization of the transactions, but usually there are many possible
serializations.

Breaking determinacy is unavoidable: As soon as a non-deterministic model such as trans-
actional memory is introduced, it is no longer possible to guarantee determinacy of the whole
program. Amongst others, Bocchino et al. [12], Lee [42], Van Roy and Haridi [61] recommend
that developers use determinism wherever possible and carefully introduce non-determinism only
where it is inescapable. Following this line of thought, we argue that the loss of determinacy does
not pose a problem: When developers decide to use a non-deterministic model, they do so because
they need its non-determinism, and therefore they are aware that determinacy is not guaranteed.
Moreover, transactions still limit the number of possible outputs developers need to consider to
the number of possible serializations of the transactions.

5.2 Futures in Transactions for Intra-transaction Parallelism: Motivation and Problems

To demonstrate the use of futures in a transaction, we revisit our running example of Figure 7.
On lines 19–21, it contains a transaction that searches for a flight and reserves seats on that flight.
It uses the function search-flight, defined on lines 6–9, which searches for a suitable flight by
filtering the list of all flights based on their trajectory, returning the first that matches. In this
function, we want to improve the performance of filtering flights by using parallel-filter, as
defined in Section 2.1. This function divides the list of flights into several partitions that are filtered

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:17

in parallel tasks. However, with a naive combination of futures and transactions this program does
not work as expected! In a language like Clojure, a transaction is thread-local, i.e., it is bound to the
task it was created in. The tasks created in parallel-filter do not have a transaction running
when they execute the function on line 8 of Figure 7, hence, they can see inconsistent values for

the flight. As such, the determinacy of the futures is no longer guaranteed Det : Depending
on the order in which their instructions are interleaved, they see different values.
The problem is that a naive combination allows futures to be created in a transaction, but they

are not part of that transaction’s context. When an atomic block appears in a new task, a separate
transaction is created with its own, possibly inconsistent, snapshot of the shared memory. This
transaction will commit independently. As such, the isolation of the transaction is broken

SI . This problem occurs amongst others in Clojure, ScalaSTM, Deuce STM for Java, and GCC’s

support for STM in C and C++.9

In Haskell, however, the type system rejects the scenario above: Transactions are encapsulated
in the STM monad while forking a task using forkIO is possible only in the IO monad. Hence,
the isolation of transactions is guaranteed, but the potential parallelism is limited: Every time
transactions are introduced to isolate some computation from other tasks, the potential perfor-
mance benefits of parallelism inside this computation are forfeited. This is throwing out the baby
with the bathwater.

5.3 Solution: Transactional Futures

Chocola solves these issues by defining transactional futures. A transactional future is the future
associated with a so-called transactional task: a task that is forked while a transaction is running.
A transactional task operates within the context of its encapsulating transaction.

Conceptually, each transactional task creates a copy of the transactional memory and accesses
only that copy. This ensures that tasks can run concurrently without interfering with each other.
To this end, a transactional task contains two data structures: a (read-only) snapshot containing
a conceptual copy of the state of the transactional memory when it was forked and a local store

containing modifications made in the task.
Each transaction starts with one root task that evaluates the transaction’s body. Its snapshot

is a copy of the transactional heap; its local store starts empty. When a task is forked, the new
task’s snapshot represents the current state of the transactional memory, hence it is the snapshot
of its parent task modified with the current local store of the parent. The local store of a newly
forked task starts empty. (These are conceptual copies; we avoid actually copying memory in the
implementation, described in Section 10.) While a task executes, deref looks up values in the
snapshot and ref-set stores new values in the local store. In the example of the previous section,
this means each task created in the parallel-filter function has a copy of the flights in its
snapshot and reads these, resulting in a consistent view.
Because a task uses only its own snapshot and local store, tasks do not interfere: The order in

which their instructions are interleaved does not affect the end result. Hence, futures are deter-
minate within the transaction, a guarantee we call intratransactional determinacy Det ITD .
This is a less restrictive version of the determinacy of the whole program that futures usually
provide, a guarantee that is inevitably broken when transactions are introduced.

9https://nbronson.github.io/scala-stm/, https://sites.google.com/site/deucestm/, and https://gcc.gnu.org/wiki/

TransactionalMemory.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://nbronson.github.io/scala-stm/
https://sites.google.com/site/deucestm/
https://gcc.gnu.org/wiki/
TransactionalMemory

17:18 J. Swalens et al.

When a task is joined for the first time, its local store is merged into the task performing the
join.10 This way, changes propagate from child tasks to their parent. Subsequent joins of the same
task will not repeat this, as their changes are already merged.
At the end of the transaction, all transactional tasks in the transaction should have been joined

(directly or indirectly) into the root task. Hence, all changes from all tasks have been incorporated
into the local store of the root task. All these changes are then committed in a single step, thus

maintaining the isolation of the transaction SI . If a conflict occurs at commit time, the
whole transaction is aborted and retried. If a conflict occurs in one of the taskswhile the transaction
is still running, all tasks are aborted and the whole transaction is retried. In other words, the tasks
within a transaction are coordinated to either all succeed or all fail: They form one atomic group.

6 TRANSACTIONAL ACTORS: COMMUNICATION BETWEEN TRANSACTIONS

In this section, we study the combination of transactions and actors. First, we describe the motiva-
tion for and problems with the use of transactions in actors (Section 6.1) and the use of actors in
transactions (Section 6.2). Next, we introduce transactional actors as a safe way to share memory
between actors (Section 6.3). Transactional actors maintain the snapshot isolation and deadlock
freedom of transactions and provide a variant of the isolated turn principle, which we refer to as
the consistent turn principle. We first introduced transactional actors in previous work [57].

6.1 Transactions in Actors to Safely Share Memory: Motivation and Problems

In Section 3, we established that introducing shared memory in an actor system can be useful and
occurs in practice. We can also observe this in the holiday reservation example. In the example
of Section 2.3, each travel agent had its own separate set of flights and hotels. In Figure 7, a more
typical reservation system is shown in which multiple travel agents use the same flights and hotels,
thus sharing memory between actors.
We discuss how this is currently achieved in two types of actor systems: pure and impure sys-

tems [19]. Pure actor systems, such as Erlang, enforce strict isolation between actors: Each actor
can access only its own memory. In these systems, developers often represent shared state using
two patterns: replication or delegation of the shared state [19]. However, both patterns require the
developer to ensure consistency of the shared data and to prevent race conditions and deadlocks.
Thus, pure actor systems maintain the isolated turn principle, but representing shared state in

them is complex and error prone. However, impure actor systems do not enforce strict isolation,
so developers can use the underlying shared-memory model of the language. This is the approach
used by the Scala projects in the study of Tasharofi et al. [60]. In these systems, the isolated turn

principle is broken as actors’ memory is no longer isolated Iso , and it is up to the developer
to ensure correct access to the shared memory.
As we will see in the rest of this section, this broken guarantee can be reintroduced by carefully

combining actors with transactions, as transactions guarantee isolation. In Figure 7, we applied
this idea by encapsulating the shared flights, hotels, and cars in transactional variables (lines 1–3),
and using transactions to access them in the travel agents (lines 19–21).

6.2 Actors in Transactions to Distribute and Coordinate Work: Motivation and

Problems

Not only are transactions useful to protect access to shared state between actors, conversely, actors
are also useful to coordinate work between transactions. In our running example, we improve the

10When two tasks modify the same transactional variable, a conflict occurs. To solve this, we allow the developer to specify

a conflict resolution function, which takes the conflicting values and returns the new value for the variable.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:19

performance by creating separate actors that search and reserve flights, hotels, and cars in parallel.
The travel agent sends messages to these actors to do this concurrently (lines 29–32).

In a naive combination of transactions and actors, this program will not work correctly. The
transaction in travel-agent-behavior sends four messages, but if the transaction aborts, e.g.,
because the ref-set on line 33 fails, the messages are not rolled back. Messages can thus be
sent multiple times and their effects are visible even if the transaction is aborted, breaking the

isolation of the transaction SI .

6.3 Solution: Transactional Actors

In Chocola, actors can share memory using transactions, as in the example of Section 6.1, we then
call these transactional actors. While this breaks the actor model’s guarantee of isolation of
all memory, transactional actors can provide a less restrictive guarantee: the isolation of actor

memory Iso IsoAM, which states that (only) the internal memory of actors is isolated. Hence,
each actor has its own memory that it can access safely because it is isolated, while memory that
is shared between actors is protected using transactions.
Further, to ensure the isolation of transactions, Chocola must make any effects on actors that

occur during a transaction part of the transaction. We consider how the four constructs of the
actor model can safely be nested in a transaction:

• behavior: Defining a behavior in a transaction is no problem, as this operation has no side
effects. A behavior can refer to variables in its lexical scope—it is essentially a closure—but
will run at a later time and thus does not have access to the encapsulating transaction.
• spawn: Spawning an actor is an effect that must be part of the transaction. As it is costly, Cho-
cola delays it until the transaction commits (successfully). This ensures that the transaction’s
isolation is maintained and the creation cost is paid only once.
• become: Become is a construct that is delayed by construction: Its effect takes place only
upon the start of a new turn. As a transaction cannot span multiple turns, the transaction
will always be committed before the effect of become is made visible, maintaining isolation.
• send: As illustrated in Section 6.2, (the effects of) a message sent in a transaction must be
rolled back if the transaction aborts. In Chocola, messages sent fromwithin a transaction get
a dependency on the transaction and are said to be tentative, while traditional messages
sent outside a transaction have no such dependency and are definitive. The receiver of a
tentative message must take this into account.When an actor takes a tentative message from
its inbox, the turn that processes it also becomes tentative: The message is processed, but
the effects it causes should not be persisted yet. Even though this turn is not a transaction,
it executes in the same ‘‘tentative’’ manner, as its effects can roll back. When a tentative

turn ends, the actor waits until the transaction on which it depends has committed. After
a successful commit of its dependency, the actor can continue to its next turn, and we say
the turn was successful. If its dependency aborts, the tentative turn fails and all of its ef-
fects are discarded. The actor then processes the next message in its inbox as if nothing
happened.

With these changes to the semantics of actors’ constructs, our example now works as expected.
The messages sent on lines 29–32 are tentative. When they are processed by the airline actor,
the turn on lines 18–21 is tentative. The effects of this turn, i.e., the reservation of the seats on the
flights, are persisted only if the original transaction succeeds. If the original transaction aborts, its
effects as well as the effects of its dependent transactions are discarded. Hence, the transaction’s

isolation is maintained SI .

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:20 J. Swalens et al.

Fig. 8. The two forked tasks may continue executing after the turn has finished (‘‘escaping’’ their turn),
interleaved with the next turn. If they send messages or use become, unexpected results can occur.

7 ACTORS AND FUTURES: INTRA-ACTOR PARALLELISM

In this section, we study the combination of futures and actors, which poses fewer problems. Com-
bining actors and futures can be useful: As we saw in Section 3, in the study of Tasharofi et al. [60],
80% of the studied projects combine actors with futures and/or threads. On the one hand, futures
can be introduced in an actor to process a turn in parallel: this is intra-actor parallelism (the
bottom-left cell of Figure 6). On the other hand, actors can be used in a program with futures to
introduce communication between parallel tasks (the top-right cell of Figure 6). We examine the
effect of the combinations on the guarantees of both models.

Determinacy of Futures. When futures are created in an actor, but they do not contain any oper-
ations on actors, determinacy remains guaranteed (bottom-left cell of Figure 6). Conversely, when

the actor constructs send and become are used in futures, determinacy is broken Det (top-right
cell of Figure 6), as they may execute in any order. Breaking determinacy for this combination is
inevitable: When futures are combined with any non-deterministic model, their determinacy will
always be broken. We argue that this is no problem, because this occurs only in those places where
the programmer explicitly uses send and become, constructs of the non-deterministic model. As
programs using only actors can also have a non-deterministic result, the developer should expect
non-determinism, whether futures are used or not.

Isolated Turn Principle of Actors. A naive combination of actors and futures breaks the isolated
turn principle. We consider the three constituent guarantees separately.

Isolation Even when futures are introduced, actor’s memory remains isolated.
Continuous message processing An actor should be free from deadlocks within a turn. Fu-

tures introduce the blocking construct join, which waits for a future to resolve, and thus
could potentially introduce deadlocks. Fortunately, a deadlock cannot occur by design. The
tasks created in a turn form a ‘‘fork tree’’ [11]: Every turn starts with one ‘‘root’’ task, which
can fork tasks, which can themselves fork more tasks, and so on, conceptually forming a tree.
No cyclical dependencies are possible in this tree, hence, it is impossible to reach a deadlock
between tasks that join each other. We formally explain and prove this in Appendix F.1.

Consecutive message processing An actor must process its messages one by one, without
interleaving turns. This requirement is broken by naively introducing futures. Figure 8 il-
lustrates the problem: An actor forks two tasks that are never joined, hence, the actor can
proceed to the next turn while the child tasks are still running. We say they ‘‘escape’’ the
turn they were forked in. The two turns overlap, so consecutive message processing is

broken Cons . This leads to two unexpected results: (1) if the child task sends a message, it
can arrive after messages sent in the next turn, and (2) become in an escaped task can still
change the actor’s behavior after the next turn started with the old behavior.
Fortunately, Chocola can reintroduce this broken guarantee using a simple requirement: All
tasks must be joined before the turn in which they were forked ends. Hence, all child tasks
must have finished before the root task finishes and the turn ends. Consequently, turns

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:21

cannot be interleaved and consecutive message processing is guaranteed Cons . We be-
lieve this requirement is not overly restrictive: it applies only when a task is forked in a turn
but its result is never used in that turn. Moreover, a similar requirement exists for transac-
tional futures, where we require that all transactional tasks are joined before the transaction
ends, thus both techniques provide a consistent model.

8 CHOCOLA: COMPOSABLE CONCURRENCY LANGUAGE

In this section, we informally describe the ontology of Chocola: the various concepts introduced
in the previous sections and their relations (Section 8.1). We demonstrate how the three models
are combined in an example (Section 8.2).

8.1 Ontology of Chocola: Its Linguistic Concepts and Their Relations

In Chocola, a program starts as a single actor containing a single task that evaluates the code. The
program can then spawn actors, fork futures, and create transactions. We summarize the main
concepts and constructs.

Actors. A Chocola program consists of actors that run concurrently and have an address, a be-
havior, and an inbox. Actors are created using spawn, which is given an initial behavior. A behavior

is created using the construct behavior and contains the code that defines how an actor behaves
when it receives a message. The behavior also contains the internal memory of the actor: variables
private to the actor. An actor can change its behavior (both the code and its internal memory)
using become.
An actor’s inbox is a queue of messages. Each message is a list of values that was sent to the

actor using send. An actor consecutively processes each message in its inbox; the handling of one
message is called a turn. When a message is sent from within a transaction or a tentative turn,
it is tentative and has a dependency on a transaction; otherwise it is definitive. A turn that is the
result of a tentative message is a tentative turn. In a transaction and in a tentative turn, spawn and
become are delayed: These are effects on actors that are gathered to be executed later, when the
dependency has successfully committed.

Transactions. A transaction is a section of the code encapsulated in an atomic block that can
access shared memory. The shared memory is represented using transactional variables. These can
be created, read, andwritten using ref, deref, and ref-set in a transaction. (Outside a transaction,
these constructs raise an error.)
Each transaction has an associated transactional context containing data related to the current

transaction: (1) its snapshot: a (conceptual) copy of the transactionalmemory before the transaction
started, (2) its local store: the modifications made to the transactional memory in the transaction,
and (3) the effects on actors that occurred during the transaction and will be executed if and when
the transaction commits. Note that it is not the transaction itself but its tasks that each contain a
transactional context.

Futures. A task is a section of the program that runs concurrently with the rest of the program. It
can be created using fork, which returns a future: a placeholder for the result of the task. This value
can be retrieved using join, which blocks until the task has finished and then returns its result.
When a task is forked in a transaction, we say it is a transactional task (which has an associated
transactional future). Each transactional task has a transactional context, which it adopted from its
parent when it was forked and which is merged into its parent when it is joined.

Note. It is important to note that Chocola does not introduce new syntactical constructs, nor
does it change the semantics of its constituent models when used separately. The novelty of

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:22 J. Swalens et al.

Chocola is that it defines the semantics of the constructs of these concurrency models when they
are combined with one another.

8.1.1 When to Use Futures or Actors for Parallelism Inside a Transaction. When parallelizing a
programwith transactions, onemightwonderwhether to use transactional futures or transactional
actors. At first glance, both seem like similar mechanisms, as both parallelize the internals of a
transaction. However, they function quite differently and have different use cases:

• A transactional future runs completely within the context of its encapsulating transaction.
It has its own copy of the heap on which it acts in isolation, but its changes will always be
joined back into its parent later. Hence, the changes to transactional memory from different
tasks of the same transaction will be committed at the same time.
• In contrast, transactional actors make it possible to ‘‘escape’’ a transaction. When a message
is sent in a transaction, it carries a dependency on that transaction. However, the turn that is
executed as a result of the message, while dependent on the transaction, does not run within
the original transaction’s context. A second transaction can be started in this turn, and this
second transaction will depend on the first, but both run in isolation and have their own
copy of the heap, and both commit separately.

These differing semantics are a result of the different use cases of the two models. Futures are used
to speed up a deterministic calculation. Thus, when they appear in a transaction, they remain part
of the transaction while locally enabling parallelism. However, actors represent separate compo-
nents in the application that occasionally communicate using messages. When a message is sent in
a transaction, the sender signals to another actor that it must act, but the receiver runs separated
from the sender. Which technique to use therefore depends on the intention: to locally parallelize
a calculation, use futures; to communicate with a separate component, use actors.

8.2 Revisiting the Running Example

We revisit the running example originally introduced in Figure 7 of Section 4.1. As explained
throughout the previous sections, using a naive combination of the three concurrency models,
this example does not work as expected. Chocola defines a semantics for the combinations of the
concurrencymodels that fixes these problems.We summarize the problems in the original example
and Chocola’s solution:

• The tasks in parallel-filter (line 8) did not have access to the encapsulating transaction
(lines 19–21), breaking the transaction’s isolation and the futures’ determinacy (Section 5.2).

Transactional futures provide such safe access, maintaining snapshot isolation SI and

intratransactional determinacy Det ITD .
• Sharing the flights, hotels, and cars (lines 1–4) between actors (lines 18–21) broke the actor
model’s guarantee of isolation of memory (Section 6.1). Chocola relaxes this guarantee to

the isolation of actor memory Iso IsoAM.
• The messages to reserve items sent in a transaction (lines 29–32) broke the transaction’s

isolation (Section 6.2). Transactional actors re-introduce this guarantee SI by making the
messages tentative.
• Tasks created in an actor could ‘‘escape’’ the turn (Section 7). Chocola enforces that they are

joined before end of turn, thereby maintaining consecutive message processing Cons .
• In a future, when using operations on transactional memory (line 8) or actors, determinacy is
broken (Section 5.1 and 7). This is unavoidable whenever a non-deterministic model is used

within a deterministic one, but we argue this can be expected by the programmer Det .

Chocola’s guarantees for the different combinations are summarized in Figure 6.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:23

Fig. 9. The representation of the program state and its elements in PureChocola.

9 PureChocola: AN OPERATIONAL SEMANTICS

This section presents PureChocola: a formal operational semantics of Chocola.We define its syntax
and program state (Section 9.1) and its reduction rules (Section 9.2). Next, we formalize Chocola’s
guarantees based on the formal semantics (Section 9.3) with proofs included in the appendices. We
also created an executable implementation of parts of PureChocola using PLT Redex [24].11 The
differences between PureChocola and the actual implementation of Chocola will be listed at the
end of Section 10.

9.1 Syntax and Program State

9.1.1 Syntax. Chocola does not introduce any new syntactical constructs; we merely defined
their semantics in certain contexts. Thus, the syntax of Chocola simply consists of the three sepa-
rate syntaxes combined. It is listed in Figure 19 of Appendix B.

9.1.2 State. The program state of PureChocola consists of all actors and tasks that have been
created up to this point and three shared data structures, as shown in Figure 9. We describe each.

Actors. Like before, an actor has a unique address a and a behavior beh. Instead of an expression,
it now stores f ?

root: the future of the root task of the current turn (or • between turns). Each actor
can contain many tasks: one root task and all its descendants. In contrast, each task belongs to
exactly one actor. Furthermore, when an actor is processing a tentative message, n?

dep
refers to the

transaction on which it depends. In that case, the actor is in a tentative turn; in a definitive turn
(and between turns) this is •.

Tasks. As before, a task contains a future f and the expression e that it is currently evaluating.
Additionally, tasks are extended to contain information about their effects:

• a: the actor in which the task runs. A task always runs within one actor.
• Fc: the (child) futures of the tasks forked in this task, which need to be joined before it finishes.
A task can have no, one, or several children. Conversely, a task has either one parent or it is
a root task within its turn, but these back references do not need to be stored.
• Fj: the futures joined in this task. This includes both the futures that were directly joined in
this task as well as those joined by other tasks that were joined into this one. Hence, these
are the tasks whose effects have been incorporated into the current task. This entails Fj can
grow only throughout the reduction of a task.
• eff: the task’s delayed effects on actors. These are gathered and will be performed at the
end of the turn, when it is sure they do not need to be rolled back. There are two kinds of
effects: spawned actors A and the result of become beh? (optional, only if a become occurred).

11https://github.com/jswalens/chocola-redex.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://github.com/jswalens/chocola-redex

17:24 J. Swalens et al.

• ctx?: the task’s transactional context. Outside a transaction this is •. It consists of:
– n: the number of the transaction that this task is part of.
– σ : the snapshot of this task. For the root task of a transaction, this is a copy of the heap.
For tasks forked during the transaction, this is the snapshot taken at the moment of the
fork.

– δ : the local store of changes made to transactional variables in this task only.
– efftx: the effects on actors that occurred in this task during the transaction.

Effects on actors can be stored in two locations: in the task (eff) and in its transactional context
(efftx). When such effects occur inside a transaction, they need to be stored in the transactional
context so they can be rolled back if the transaction aborts. When these effects occur outside a
transaction but in a tentative turn, they need to be stored in the task and may need to be rolled
back when the turn ends. Keeping these effects in two places is a result of the fact that there are
two kinds of ‘‘tentative’’ sections that may need to roll back: transactions and tentative turns.

Shared data structures. Three data structures can be accessed from multiple tasks. First, the in-
boxes of the actors in μ. Tentative messages now contain a dependency (n?

dep
) that refers to the

transaction in which they were sent; for definitive messages this is •. Second, τ maps transactions
to their status. When an actor processes a tentative message, it uses τ to verify the status of its
dependency. Third, the transactional heap σ , which works as before.

9.1.3 Evaluation Contexts. The program evaluation context P can again choose an arbitrary
task to evaluate next. The definition of E is simply the combination of the three definitions of the
separate models from Section 2 (listed fully in Figure 19 of Appendix B).
P� A, T ·∪ 〈f , a, E, Fc, Fj, eff, ctx?〉, μ, τ , σ

9.1.4 Helper Functions and Operations. In Appendix B, Figure 20 defines the three helper func-
tions to extract elements out of the program state. Figure 21 defines the operations | and +=, which
will prove useful when tasks are joined and their effects need to be merged.

9.2 Reduction Rules

We can now describe the reduction relation→ of PureChocola. We start with the base language
(Section 9.2.1) and then define the operations on futures (Section 9.2.2), transactions (Section 9.2.3),
and actors (Section 9.2.4). These rules are modifications of those from Section 2.
In some rules, the task being reduced accesses only its own state. We call these local reductions

and will write them using the shorthand T :
T 〈f , a, e, Fc, Fj, eff, ctx?〉 = A, T ·∪ 〈f , a, e, Fc, Fj, eff, ctx?〉, μ, τ , σ

This syntax not only simplifies these rules, but also distinguishes local and non-local reductions,
which will be useful when proving intratransactional determinacy (in Appendix C).

9.2.1 Base Language. As before, the base language can be used in any context, whether in or
out a transaction and whether in a definitive or a tentative turn.→b is defined in Appendix B.2.

congruence|c

T 〈f , a, E[e], Fc, Fj, eff, ctx?〉 → T 〈f , a, E[e′], Fc, Fj, eff, ctx?〉 if e→b e′

9.2.2 Futures. We define how to fork and join a future in Figure 10.

fork. As before, forking a future creates a new task that evaluates the given expression. If the
task was forked in a transaction, it now has a transactional context, containing amongst others a
snapshot of the transactional memory at the current point (σ :: δ) and an empty local store. A new

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:25

Fig. 10. Rules concerning futures.

task’s set of forked tasks (Fc) is empty, as it has not forked any futures. However, its joined tasks Fj
are copied from its parent: When these are joined again, their effects should not be applied again.

join. There are two rules to join futures: when joining a future for the first time within the same
actor (join1|c), and when joining a future subsequently or within another actor (join2|c).

In join1|c, when a future from the same actor is joined for the first time (f∗ � Fj), its effects
on actors and the transactional context are merged into the task performing the join, using the
operator += defined in Section B.5. We require that the task f∗ has joined all of its children (F∗c ⊆
F∗j), so the effects of its children have been merged into f∗ and are now present in its eff and ctx,

allowing us to simply merge these. If the task has not joined all its children, no rule is applicable
in PureChocola; in the actual implementation of Chocola an error is raised.
Joining a transactional task into a non-transactional task is not allowed: The transactional task

has effects on transactional state that the non-transactional task cannot handle. In practice, this
will raise an error. The opposite, joining a non-transactional task into a transactional task, is no
problem, as the non-transactional task does not have any side effects.
The rule join2|c simply resolves to the future’s value without merging effects and occurs in two

cases. First, in the case of subsequent joins: The effects are already present and do not need to be
merged again; second, when joining a future from a different actor, which can occur when an actor
sends a future in a message. Merging the effects of the task f∗ from actor a∗ into the task f of actor
a is not desirable: Effects on actors should not be ‘‘transferred’’ between actors, as this could cause
them to be duplicated. Instead, these effects will be merged into the parent of f∗, which exists in
the same actor a∗, as a result of the rule that requires parent tasks to join all of their children (a
condition on the rules join1|c and turn-end|c).

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:26 J. Swalens et al.

Fig. 11. Rules concerning transactions.

9.2.3 Transactions. The rules handling transactions are shown in Figure 11. We describe their
changes compared to Section 2.2.3.

atomic, ref, deref, ref-set. The rule atomic|c has been modified to store the transactional state in
ctx instead of directly in the task. The other rules work almost exactly like before.

commit. The commit rules have been modified to take into account whether the current turn
is definitive or tentative. Before a transaction can successfully commit, in the rule commit� |c, the
current turnmust either be definitive or its dependencymust have succeeded (n?

dep
= • or τ (n?

dep
) =

〈�, e〉). This ensures that changes that are the result of a tentative message are persisted to the
transactional heap only when it is sure the dependency succeeded. In commit×|c, this condition is

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:27

not necessary:After a conflict, the transaction will not write any changes to the transactional heap
anyway. We also add the rule commit•|c, which matches when the current transaction runs in a
tentative turn whose dependency failed (τ (ndep) = 〈×, e〉). Then:

• The current turn is abandoned and the actor returns to an idle state. Any changes that oc-
curred in the current turn are thus discarded, as they are the result of an invalid message.
• All other tasks that were active in this turn are also stopped and removed.
• This transaction and all other transactions in this turn are marked as aborted in τ . This
ensures that tentative messages sent by these transactions are now invalid. Note that
other transactions in this turn cannot have committed yet, as they must also wait for the
dependency.

No rule applies when the dependency is still running, i.e., ndep � • and τ (ndep) = 〈�, e〉. As a
result, the reduction of the current task will be stuck until its dependency commits or aborts, at
which point either commit� |c or commit•|c applies and the current task can proceed.

Additionally, the rules commit� |c and commit×|c have two other modifications. First, all tasks
that were forked in a transaction must have been joined before the commit. This ensures that
all effects have been merged into the root task of this transaction, and can therefore be applied
atomically. Second, the effects on actors that occurred in the transaction are merged into the task
upon a successful commit or discarded if the transaction aborts.

9.2.4 Actors. Figure 12 shows the operations on actors. Section 6.3 described how these work
in each of three contexts: in a transaction, outside a transaction in a tentative turn, and out-
side a transaction in a definitive turn; the reduction rules likewise differentiate between these
cases.

spawn. spawn creates a new actor, but it is not immediately active: it is not added to A in the
program state. Outside a transaction, the new actor is stored in the effects of the current task,
eff (both in definitive and tentative turns). The actor will become active if and when the current
turn ends successfully (rule turn-end|c). In a transaction, the new actor is stored in the effects of
the transaction, efftx. If the transaction commits successfully, these effects will be merged into the
effects of the task upon commit, which will eventually be executed at the end of the turn. If the
transaction aborts, the effects are discarded. The inbox is created immediately, though, as it should
be able to receive (possibly tentative) messages immediately.

become. become similarly distinguishes these two cases: if no transaction is active, the effect is
stored in the task; otherwise, it is stored in the transaction.

send. Messages are always sent immediately, but can be tentative. This is indicated through an
additional parameter n?

msg, which refers (1) to the current transaction in a transaction, (2) to the

current dependency in a tentative turn, or (3) is • in a definitive turn.

Receive (start of turn). The rule receive|c is triggered when an actor takes a message from its
inbox. As before, it binds the parameters of the code in the behavior to the respective values in the
internal memory and the message. A root task is created to evaluate this expression and its future
is stored in the actor. If the message is tentative, its dependency is copied to the actor, causing the
turn to be tentative as well. (n?

dep
can be •, too, then the turn is definitive.)

End of turn. Finally, the rule turn-end|c is evaluated when the turn ends, i.e., when its root task
has been reduced to a single value. The actor moves to an idle state and loses its dependency. We
require that the root task has joined all its children. In turn, these children must have joined their
children (required by rule join1|c). (In contrast to the formal semantics, the implementation raises

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:28 J. Swalens et al.

Fig. 12. Rules concerning actors.

an error if this is not the case.) As a result, the effects of all tasks created in this turn have been
merged, ultimately becoming part of the root task’s effects.
The turn can succeed or fail. When it is definitive (n?

dep
= •) or when it is tentative and its

dependency committed (τ (n?
dep
) = 〈�, e〉), the turn succeeds so its delayed effects are executed:

The actor’s behavior is updated (if necessary) and newly spawned actors become active. When a
turn is tentative and its dependency has aborted (τ (n?

dep
) = 〈×, e〉), it fails, so its delayed effects

are discarded. When the turn is tentative and its dependency is still executing (�), this rule will not
be applicable: The reduction of this actor is stuck until the dependency finishes.

9.3 Formalization of Guarantees

We formalize Chocola’s guarantees here and try to give the intuition behind these theorems. Cor-
responding formal proofs are given in the appendices.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:29

9.3.1 Intratransactional Determinacy. We first introduce several definitions. In Section 2.1.3, we
defined the equivalence of two program states up to renaming; here, we define the notion of equiv-
alent up to message ordering.

Definition 9.1 (Equivalence Up to Message Ordering �). Two program states are equivalent up

to message orderingwhen they are equivalent except for the order of themessages in the inboxes
of the actors. Formally, we write p1 � p2 for p1 = A, T, μ, τ , σ and p2 = A′, T′, μ ′, τ ′, σ ′ if:

• A, T, μ, τ , σ � A′, T′, μ, τ ′, σ ′ (the states are equivalent except for the inboxes), and
• ∃α : dom(μ) → dom(μ ′) (a renaming of equivalent actor addresses), so
• ∀a ∈ dom(μ) : μ(a) is a permutation of μ ′(α(a)) after transaction numbers have been re-
named (inboxes of equivalent actors contain the same messages, but not necessarily in the
same order).

Definition 9.2 (Intratransactional Reduction →n). The reduction of the expression e in a trans-
action with number n looks as follows: A, T ·∪ 〈f , a, e, Fc, Fj, eff, 〈n, σ , δ , efftx〉〉, μ, τ , σ →
A′, T′ ·∪ 〈f , a, e′, F′c, F

′
j , eff′, 〈n, σ , δ ′, eff′tx〉〉, μ

′, τ ′, σ ′. We refer to this as an intratransactional

reduction and will sometimes annotate it with the notation→n .

Definition 9.3 (Ready-to-commit States). We say a program state A, T ·∪ 〈f , a, E[atomic� v],
Fc, Fj, eff, 〈n, σ , δ , efftx〉〉, μ, τ , σ is ready to commit transaction n. This state is running the
transaction n in task f , which has been fully reduced to a value v . It corresponds to the left-hand
side of the commit rules, i.e., the next rule to trigger in the task f is one of the commit rules.

Theorem 9.4 (Intratransactional Determinacy). Given p0 = P[atomic� e], if p0 →
n ∗ p1

and p0 →
n ∗ p2, with p1 and p2 states ready to commit transaction n, then p1 � p2.

Intuitively, this theorem can be understood as follows: A transaction starts with a given state
and then evaluates until the point just before it commits. Any state it can reach is equivalent, ex-
cept for the order in which messages are sent. In other words, different evaluations might take
different steps during the reduction of the transaction, but eventually they will all lead to equiva-
lent end results just before the commit. This corresponds to maintaining determinacy within each
transaction. We prove this theorem in Appendix C.

9.3.2 Snapshot Isolation. PureChocola guarantees snapshot isolation as defined in Theorem 2.4.
A proof is given in Appendix D. Intuitively, it is quite easy for Chocola to maintain snapshot
isolation: While multiple tasks can be forked within each transaction, all their changes are first
combined into the transaction’s root task before they are committed in a single step. Hence, each
transaction still starts from one snapshot and still commits in one step: Chocola’s commit protocol
is unchanged. Moreover, in a tentative turn, a transaction can commit only if the dependency has
committed, but this affects only the order in which transactions are committed and not the actual
commit protocol.

9.3.3 Consistent Turn Principle. The isolated turn principle was defined in Section 2.3.1 as a
combination of three constituent guarantees: continuous message processing, consecutive mes-
sage processing, and isolation. As PureChocola allows memory to be shared between actors (using
transactions), the isolated turn principle clearly no longer holds. Instead, we define a slightly less
restrictive guarantee, which we call the consistent turn principle. The consistent turn principle
replaces the isolated turn principle’s requirement for the isolation of all memory with a require-

ment of the isolation of actor memory only Iso IsoAM.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:30 J. Swalens et al.

Lemma 9.5 (Isolation of Actor Memory). The internal memory of an actor is isolated: After the

actor’s creation, its internal memory can be read and written only by the actor itself.

Theorem 9.6 (Consistent Turn Principle). PureChocola provides the consistent turn principle:

It guarantees continuous message processing, consecutive message processing, and isolation of actor

memory.

Continuous and consecutive message processing were defined in Lemmas 2.6 and 2.7 of Sec-
tion 2.3.3 and still hold for Chocola. We prove the three lemmas and the theorem in Appendix E.

9.3.4 Deadlock Freedom and Continuous Message Processing. In Definition 2.5 (in Section 2.3.3),
we said that “a set of processes is deadlocked if each process in the set is waiting for an event
that only another process in the set can cause” [59]. In PureChocola, the following transition
rules ‘‘wait’’ for events, i.e., these rules trigger only when some non-local state conforms a certain
pattern:

• The rules join1|c and join2|c wait until the task that is being joined has finished its reduction.
• The different commit rules and the rule turn-end|c, if there is a dependency on another trans-
action, wait until the dependency has finished reducing and has committed or aborted.
• The rule receive|c waits until a message is available in the current actor’s inbox.

The last case can lead to a deadlock when two actors are blocked waiting for a message from the
other. The actormodel is inherently prone to such deadlocks at the level of messages—it guarantees
deadlock freedom inside a turn only—and we will therefore not further consider this issue. We
formalize the absence of deadlocks for the two other cases.We prove these theorems in Appendix F.

Theorem 9.7 (Deadlock Freedom of Futures). Assuming no futures are stored in transactional

memory, the tasks created within a turn cannot deadlock. A set of tasks is deadlocked if each task in

the set is waiting for the future of another task created in the same turn to be resolved.

The intuition behind this theorem is that the tasks within a turn form a ‘‘fork tree.’’ In such a
tree, no cycles are possible, thereby avoiding the cyclical dependencies that lead to deadlocks.

Theorem 9.8 (Deadlock Freedom (Continuous Message Processing) of Transactional
Actors). Deadlocks between transactions in tentative turns are impossible, as dependencies al-

ways go from newer to older transaction attempts, defining a total order on the transaction

attempts.

The intuition behind this theorem is that an actor acquires a dependency when receiving a
message, i.e., at the start of a turn, and this dependency must therefore necessarily point to an
older transaction. That older transaction cannot acquire a new dependency, because while it
is running, it cannot receive a message. Hence, cyclical dependencies between transactions are
impossible.

Note on Deadlock Freedom of Transactions. In Section 2.2.5, we discussed deadlocks in transac-
tions. The same remark applies here: Deadlocks are prevented using the MVCC algorithm.

10 IMPLEMENTATION

We have implemented Chocola on top of Clojure.12 Like Clojure, Chocola is partially implemented
in Clojure itself, and partially in Java. Clojure already provides futures and transactions. To use
Chocola, programmers must load it as an extension of Clojure when their program starts, at which

12It is available online at http://soft.vub.ac.be/~jswalens/chocola/ and https://github.com/jswalens/chocolalib.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

http://soft.vub.ac.be/~jswalens/chocola/
https://github.com/jswalens/chocolalib

Chocola: Composable Concurrency Language 17:31

point it will replace parts of Clojure’s implementation of futures and transactions and add ac-
tors, to provide the semantics discussed in this article. We briefly summarize our implementation
here.13

While the implementation provides the semantics as specified in Section 9, it is not a translation
of the reduction rules. The differences with PureChocola are listed at the end of this section.

Actors. Chocola adds a simple implementation of actors to Clojure. A behavior definition is
converted into a nested function, with the parameters of the outer function corresponding to the
internal memory and those of the inner function to the message’s values. An actor stores three
components: its behavior definition, its internal memory, and its inbox (using Java’s LinkedBlock-
ingDeque). Every actor consists of a thread that executes an infinite loop that takes a message
from the inbox and evaluates the behavior definition with the internal memory and the message’s
values.

Transactional Actors. We made these changes to support transactional actors:

• At the start of a turn, it is marked tentative if the processed message has a dependency.
• When a message is sent, a dependency may be attached: In a transaction, the dependency is
that transaction; in a tentative turn but outside a transaction, the dependency of the turn is
used; and in a definitive turn it is null.
• Depending on the context, the effects of become and spawn are delayed.
• At the end of a tentative turn, the actor waits until the dependency has finished. If it suc-
ceeded, newly spawned actors are started; otherwise, they are discarded and the old behavior
is restored.

Transactional Futures. Most of the data structures that Clojure stores in the class Transaction
were moved to a new class TransactionalContext, which is associated with a (transactional)
future. Each transaction contains one ‘‘root’’ TransactionalContext, which contains its root
future’s transactional data structures. We explain how transactional futures are forked and joined
(in TransactionalContext) and which changes were made to running and aborting a transaction.

In Section 5.3, we explained that forking a future conceptually copies its parent’s snapshot and
local store. In our implementation, we avoid creating duplicates, using the technique described
by Swalens et al. [56]. Instead of representing these data structures as maps, they are represented
as a tree of maps. The root future’s snapshot and local store start empty. When forking a future:
(1) the child’s snapshot is a reference to the parent’s current local store; (2) the child’s local store
is an empty wrapper around the parent’s local store; (3) the parent’s local store is modified to be a
wrapper around its current local store, so further modifications in the parent are not visible by the
child. Looking up a value consists of first looking it up in the current map, then in the map higher
up the tree, and so on until the root of the tree.
When joining a future, the current task first waits until the child has finished and then merges

its data structures into those of the parent, as in the formal semantics.
Transactions mostly run as before and use the data structures from the transactional context of

the root future during commit. There is one important change: there are now two kinds of aborts.
On the one hand, RetryException (which already exists in Clojure) is raised when a transaction
encounters a conflict, and corresponds to the rule commit×|c in the formal semantics. This causes
the transaction to abort and retry. On the other hand, AbortException (new in Chocola) is raised
when a tentative message is invalid. This is checked at the end of a tentative turn (as in rule

13This section omits many details of our implementation. We have also renamed some constructs for clarity or brevity, e.g.,

future to fork, dosync to atomic, and LockingTransaction to Transaction.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:32 J. Swalens et al.

turn-end|c of the formal semantics) and during the commit of a transaction in a tentative turn (as
in rule commit•|c). After an AbortException, the whole turn is aborted and the actor proceeds to
the next message. (These two exceptions cannot be raised by the programmer; they are internal
to our implementation.)

Compatibility with Clojure. These features of Clojure are safe/unsafe to use in Chocola:

� The functional subset of Clojure, i.e., all its purely functional built-in functions, will not
break Chocola’s guarantees.

× In general, any functions with side effects cannot safely be used in Chocola; e.g., the use of
non-deterministic input breaks determinacy, or waiting for the response to an HTTP request
can break deadlock freedom.

� Clojure provides futures and transactions. When used separately, Chocola is backwards
compatible. When they are combined, Chocola changes Clojure’s semantics as in Section 5.

× Any other concurrency model provided by Clojure is incompatible with Chocola: the
guarantees can be broken, as in regular Clojure.

Differences with PureChocola. We list the key differences with the formal semantics PureChocola:

• Chocola is built on top of Clojure, while the base language of PureChocola is a functional λ
calculus. It is generally unsafe to use functions from Clojure with side effects in Chocola.
• In Chocola intratransactional conflicts may be resolved using custom “conflict resolution
functions.” This functionality has been omitted from PureChocola.
• PureChocola implements snapshot isolation straightforwardly, by taking a copy of the trans-
actional memory. Chocola instead relies on theMVCC algorithm (as explained in Section 2.2).
A notable consequence is that in Chocola, a transaction can abort early, while in PureChocola
conflicts are only detected during commit.
• In PureChocola, commit•|c immediately stops all tasks and aborts all transactions in the cur-
rent turn. In Chocola, this is implemented using AbortException (see above). Hence, in
PureChocola all tasks seem to abort at exactly the same moment, while in Chocola they
abort at different moments.
• PureChocola requires that tasks and turns join all their children. When this is not the case
in Chocola, an exception is raised. In PureChocola, we did not make these errors explicit.

11 EVALUATION

In this section, we evaluate the performance of Chocola (quantitatively) and the effort required to
use it (qualitatively). We first describe our methodology and experimental setup (Section 11.1).
Next, we look at three applications that use transactions and show that introducing transac-
tional futures or actors improves their performance by exploiting additional parallelism (Sec-
tions 11.2, 11.3, and 11.4). Finally, we discuss the developer effort required to make these changes
(Section 11.5).

11.1 Methodology and Experimental Setup

In this section, we describe the goal and criteria of our evaluation, howwe selected the benchmarks,
and how we transformed them to use Chocola.

Evaluation Goal and Criteria. The goal of this evaluation is to demonstrate that, in existing pro-
grams that use transactions, additional parallelism can be exploited within those transactions by
using Chocola, without fundamentally changing the design of the program. Hence, we select exist-
ing applications that use transactions and compare the original application with a transformation

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:33

Table 1. Characterization of the STAMP Applications from Minh et al. [48],
on a Simulated 16-core System

Application
Tx length Average Contention

Domain
(instructions/tx) time in tx (retries/tx)

Labyrinth 219,571 100% 0.94 Engineering

Bayes 60,584 83% 0.59 Machine learning

Yada 9,795 100% 2.51 Scientific

Vacation-high 3,223 86% 0.00 Transaction processing

Genome 1,717 97% 0.14 Bioinformatics

Intruder 330 33% 3.54 Security

Kmeans-high 117 7% 2.73 Data mining

SSCA2 50 17% 0.00 Scientific

of the program that introduces transactional futures or actors. Our evaluation focuses specifically
on programs with transactions, because the combination of actors and futures, discussed in Sec-
tion 7, did not require major changes to the semantics of the separate models.
We compare the original and transformed programs using two criteria:

Performance The ultimate goal of introducing additional parallelism is to increase perfor-
mance. Hence, we calculated the speed-up by comparing the execution time of (a part
of) the transformed program with a varying number of threads with that of the original
program.

Developer effort We (qualitatively) assess the effort that is required from the developer to use
our techniques by discussing the changes that were made to the programs (in Section 11.5).

Selection of Benchmarks. Our evaluation is based on the STAMP benchmark suite [48]: eight
applications, based on real-world use cases of transactions, commonly used to compare the perfor-
mance of transactional systems and covering a range of characteristics (some shown in Table 1).
To evaluate transactional futures, we are interested in two characteristics in particular. First, the

time spent in transactions: When most of the program’s execution occurs in transactions, further
parallelization of these applications will have to occur within the transactions. Second, the transac-
tion length: Long-running transactions may benefit frommore fine-grained parallelism. As shown
in Table 1, three applications exhibit these characteristics: Labyrinth, Bayes, and Yada.
To evaluate transactional actors, we look at a slightly reduced version of the Vacation bench-

mark, called Vacation2. This application already served as the basis for many of the code examples
throughout this article. It is suited to the use of transactional actors, as the actor model naturally
encodes the event-driven way in which a travel reservation system processes requests from cus-
tomers. It is also an application that spends much of its time in transactions, and therefore may
benefit from offloading parts of these transactions to different actors.

Transformation of Benchmarks. We started by porting the STAMP benchmarks fromC to Clojure,
retaining the design and algorithms of the original program.We then introduced futures and actors
where applicable using the following steps. First, using profiling tools, we search for the atomic
block in which the largest proportion of the program’s execution time is spent. Next, we search
for the part of that transaction in which most time is spent. In our cases, this is always a loop. We
try to parallelize this loop. To do this, we examine whether there are dependencies between the

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:34 J. Swalens et al.

Fig. 13. The steps taken to transform the STAMP benchmarks into a version that uses Chocola.

iterations of the loop, which occur when an iteration uses the result of a previous iteration. There
are three cases (illustrated in Figure 13):

• When the iterations are independent, we simply parallelize the loop. This occurs for Bayes
and Vacation2.
• When there are dependencies between the iterations, but the program follows a standard

algorithm for which a parallel version exists in literature, we replace the sequential algorithm
with a parallel equivalent. This occurs for Labyrinth, in which a sequential breadth-first
search is changed into a parallel search algorithm.
• When there are dependencies between the iterations and the program uses a custom algo-

rithm, we reach a negative result and do not introduce futures or actors. This is the case for
Yada: It uses a custom algorithm for Delaunay mesh refinement that either cannot be paral-
lelized or requires specific domain expertise to do so. Hence, we do not further consider this
application.

The code of all benchmarks is available online, both the original and the transformed versions.14

Each benchmark in the STAMP suite further has several parameters; we note their values for each
experiment as we go along. All data points of the graphs in this section correspond to themedian of
30 runs, with the error bars depicting the interquartile ranges. We show medians and interquartile
ranges, because the results are usually not normally distributed. Note also that interquartile ranges
depict the spread of the results and should be independent of sample size. We found a sample size
of 30 to strike the balance between sufficiently fast experiments and sufficient precision.
In all experiments, the transformed benchmarks are compared with the original benchmark in

Clojure. We do not compare to the implementations in C, as the performance characteristics of
Clojure and C are so wildly different that they render a comparison meaningless.15

Hardware and Software Set-up. The experiments ran on a machine with four AMDOpteron 6376
processors, each containing 16 cores with a clock frequency of 2.3 GHz and a last-level cache of
16MB, resulting in a total of 64 cores. The machine has 128GB memory. We used Chocola 2.0.1
and Clojure 1.10.1, running on the OpenJDK 64-Bit Server VM (build 25.222-b10) for Java 1.8.0.16

14 https://github.com/jswalens/labyrinth • .../bayes • .../vacation2 • .../yada.
15Just to name a few: a statically typed programming language with manual memory management vs. a dynamically

typed language with garbage collection, an imperative vs. functional programming paradigm, and STMs using different

algorithms.
16 Performing statistically rigorous performance experiments on virtual machines with just-in-time compilation, such as

the Java Virtual Machine in our case, is notoriously difficult [7, 26]. As we are interested in the execution time of ephemeral

benchmark programs that process some input to produce some output, and not the steady-state performance of continually

running applications, our experiments all measure the execution time for all or part of the program from start to finish.

Each measurement corresponds to a new execution of the program, for which a new instance of the JVM is started.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://github.com/jswalens/labyrinth
https://github.com/jswalens/bayes
https://github.com/jswalens/vacation2
https://github.com/jswalens/yada

Chocola: Composable Concurrency Language 17:35

Fig. 14. Speed-up of the Labyrinth benchmark for the version with sequential search (blue line) and parallel
search (other lines), as the total number of threads (t×p) increases (logarithmic scale). The gray line indicates
the theoretical maximal speed-up of the version using a parallel search, per Amdahl’s law.

11.2 Labyrinth

The Labyrinth benchmark connects points in a grid using non-overlapping paths. The program
finds the cheapest path using a breadth-first search algorithm. This occurs in a transaction to
ensure that paths do not overlap: If two transactions find overlapping paths, one will roll back
and search an alternative. The program spends almost all its time performing these searches. We
transformed the program to replace this with a standard parallel breadth-first search algorithm
[68].
We ran the experiments on a three-dimensional grid of 50 × 50 × 50 with 10 input pairs. Fig-

ure 14 shows the speed-up when varying two parameters: t : the number of worker threads that
process input points in parallel, and p: the maximal number of partitions created in each iteration
of the parallel search (only for the version with parallel search).17 The x axis denotes the (maxi-
mal) number of threads, which is t for the sequential search and t ×p for the parallel search. The y
axis shows the speed-up, calculated relative to the version with sequential search and one worker
thread, which takes 57.3 s.
The blue line depicts the results of the original benchmark with the sequential search algorithm.

Increasing the number of threads produces only a modest speed-up, because they find overlapping
paths and consequently need to roll back and reexecute. This curtails any potential speed-up.
For the version with parallel search, both the number of partitions (different lines) and the num-

ber of worker threads (different points on the same line) are varied. As the number of partitions p
increases, the speed-up improves: Each transaction forks p tasks and consequently finishes faster.
On the tested hardware, an optimal speed-up of 2.04 is reached, when 8 worker threads process
elements and create up to 16 partitions.
The parallel search with p = 1, which does not actually search in parallel as only one partition

is created, is slower than the sequential search: The difference between the blue and the black
line reflects the cost of switching to a parallel algorithm. We also annotated the graph with the

17To minimize the overhead of forking futures, we ensure that each partition contains at least 20 elements.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:36 J. Swalens et al.

Fig. 15. Speed-up of the part of the Bayes benchmark that learns the structure of a network with 32 variables
as the number of workers increases (logarithmic scale). The blue line shows the original version. The orange
line shows the version with a parallel-for loop that executes (up to) 32 iterations in parallel.

theoretical maximum speed-up (gray line), calculated using Amdahl’s law.18 Profiling shows that
the transformed program spends 71.4% of its execution time performing the search algorithm; the
other 28.6% is spent in code that is not parallelized. Hence, if the program ran on a theoretical ma-
chine with an infinite number of cores, its maximal speed-up would be 3.5. The gray line indicates
this theoretical limit for varying number of threads.
These results demonstrate two ways in which transactional futures improve performance. First,

transactions run faster by exploiting parallelism in the transaction. Second, conflicts are cheaper,
because each attempt runs faster. By varying the two parameters, we can find an optimum be-
tween running several transactions simultaneously but risking conflicts (t) and speeding up the
transactions internally but with more costly fine-grained parallelism (p).

11.3 Bayes

The Bayes benchmark implements an algorithm that learns the structure of a Bayesian network:
Starting from a network of v variables without dependencies, it adds dependencies to maximize
its ability to predict the input data. Each variable of the network is represented as a transactional
variable. t worker threads process a shared work queue in parallel: They insert a dependency into
the network, then calculate which dependencies (if any) could be inserted next, and append the
best candidate to the work queue. This is encapsulated in a transaction to ensure that conflicting
threads cannot introduce cycles in the network. This transaction contains a for loop that calculates
the score for each candidate. As each iteration of the loop is independent, it can be parallelized by
replacing for with parallel-for, a construct of Chocola that executes the loop in parallel using
transactional futures.
We ran the benchmark on a network of 32 variables with an input of 512 records, generating up

to 8 parents per variable. Figure 15 shows the speed-up of the learning phase of this benchmark
as the number of worker threads (t) increases, compared to the original version with one worker.

18See https://en.wikipedia.org/w/index.php?title=Amdahl%27s_law&oldid=917796330.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://en.wikipedia.org/w/index.php?title=Amdahl%27s_law&oldid=917796330.

Chocola: Composable Concurrency Language 17:37

The blue line plots the speed-up of the original version. Initially, as the number of workers that
run transactions in parallel increases, the speed-up increases. However, when using more than 6
workers, the speed-up plateaus. (The maximal speed-up is 2.81.) By examining the execution of
the program, we find that the program generates a large initial amount of work, but that after a
certain point in the execution not enough work is available to keep all threads busy. Hence, after
that point, only a limited number of worker threads actually perform any work.
The orange line shows the version with parallel-for. Here, there are up to t transactions

running in parallel and in each up tov (= 32) transactional tasks run in parallel. When there is only
one worker processing one transaction at a time (t = 1), the parallelization of this loop produces
a speed-up of 2.07. By increasing the number of workers, a maximal speed-up of 3.33 is achieved
when up to 5 transactions run in parallel, each containing a parallel-forwith up to 32 iterations.
Again, the speed-up plateaus, as not enough work is available for all worker threads. However, the
reached speed-up is higher than the original version, as more fine-grained parallelism is exploited
in each work item.
In conclusion, while in the original version the parallelism is limited to the number of trans-

actions, we can improve performance by using transactional futures to exploit more fine-grained
parallelism within the transactions.

11.4 Vacation2

Our Vacation2 benchmark is based on the Vacation benchmark from STAMP.19 At the start of the
program, r flights, hotel rooms, and cars are generated, collectively called items, with a random
price and a random number of seats. The input consists of c customers that want to book a holiday
for one to five people. For every item type, customers randomly select a subset of q items, pick the
cheapest with sufficient available seats, and reserve seats. Additionally, each customer generates
a password using a cryptographically secure hash. We ran the experiments with c = 1000, r = 50,
and q = 10.
Each item and each customer is stored in a transactional variable. In the original benchmark,

there are p worker actors, over which the customers are evenly distributed. Each customer’s reser-
vation is encapsulated in a transaction, ensuring seats cannot be double-booked. We transformed
the original benchmark to parallelize this transaction by reserving the different items in parallel, in
separate actors. In the transformed version, next to p primary worker actors, there are s secondary
worker actors. Now, each customer will send messages to secondary worker actors, which each
reserve one item in a new transaction. Because the transactions in the secondary workers have a
dependency on those in the primary workers, correctness remains guaranteed.
In Figure 16, the blue line depicts the speed-up of the original version. As the number of worker

actorsp increases, the speed-up increases up to 2.5 for 42worker actors. On amachinewith 64 cores
this is very limited: This is due to the fact that increasing the number of transactions that run in
parallel increases the chance of conflicts and thus the number of retries.
The other lines in the figure show the speed-up of the transformed program. Both the number

of primary (the x axis) and secondary (different lines) worker actors are varied. When using only
one secondary worker actor, customers are processed in parallel but the reservation of individual
items is not. Increasing the number of primary worker actors results in a maximal speed-up of 6.1
for 32 primary worker actors: a better result than the original version. This is because there are
far fewer conflicts: there is only one secondary actor reserving items, so there can never be any
conflicts on the items.

19We add the suffix “2” to clearly indicate that, in contrast to the other benchmarks, we omitted some functionality: In the

original STAMP benchmark, customers can be deleted and items can be changed, while Vacation2 does not support this.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:38 J. Swalens et al.

Fig. 16. Speed-up of the Vacation2 benchmark. The blue line shows the original version for an increasing
number of worker actors (p). The other lines show the version using transactional actors for varying numbers
of primary (p) and secondary (s) worker actors.

By increasing the number of secondary worker actors, the speed-up can be improved further.
We see that a maximum speed-up of 11.0 is reached for 38 primary and 8 secondary worker actors
on this machine. At this point, the balance between increased parallelism and a low chance of
conflicts is optimal. Using more than 8 secondary worker actors will again lower the performance
due to a higher chance of conflicts. This result demonstrates that this application benefits from
being parallelized in two places: Instead of parallelizing only the processing of customers (as in the
original version) or parallelizing only the reservation of items (the results of p = 1), the optimum
is found by combining both.
This experiment capitalizes on another benefit of transactional actors as well: They allow a trans-

action to be split up into multiple transactions with dependencies. Every transaction in the original
version was split into one primary and several dependent transactions. If the primary transaction
aborts, the dependent transactions are aborted, too. However, if a dependent transaction aborts, no
other transaction must abort. Hence, by using transactional actors, we lower the cost of a conflict
in a dependent transaction, as only this part needs to retry.
Finally, we note the high overhead of transactional actors: while the original version took

5,656ms when using a single worker actor, the version with transactional actors takes 14,377ms
when p = 1 and s = 1, more than twice as slow. We suspect this is due to our relatively simplistic
implementation of actors and we believe further optimizations could improve performance.

11.5 Developer Effort

In this section, we discuss the effort required to use Chocola. We focus on the qualitative aspect:
which changes were necessary to introduce transactional futures and transactional actors in a pro-
gram with transactions, and how do they compare to the changes necessary to introduce regular
futures and actors in a program without transactions. Table 2 summarizes the quantitative aspect:
the number of lines of code that were changed.

11.5.1 Labyrinth. To introduce transactional futures in the Labyrinth application, 20 lines (3%)
were removed and 72 lines (10%) were added out of 748 lines in total. Almost all of these changes

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:39

Table 2. The Number of Lines of Code Added and Removed to
Introduce Transactional Futures or Actors

Benchmark Added Removed Total lines of code

Labyrinth 72 (10%) 20 (3%) 748

Bayes 1 (<1%) 1 (<1%) 1,256

Vacation2 25 (7%) 17 (5%) 359

are a result of swapping the sequential search algorithm with a more complex parallel equivalent.
Besides that, the developer needs to define a suitable conflict resolution function for the trans-
actional variables that represent the grid. Thus, we observe that the effort required to introduce
transactional futures in this program is similar to the effort required to parallelize any sequential
code, with the definition of the conflict resolution function as a notable exception.

11.5.2 Bayes. To transform the original version of the Bayes application into the one that uses
transactional futures, actually only one line (out of 1,256) had to be changed: forwas replaced with
parallel-for. This is possible, because each iteration of the loop is independent, exhibiting a type
of parallelism sometimes described as ‘‘embarrassingly parallel’’ [36]. This benchmark thus epito-
mizes the small developer effort required to introduce transactional futures: While in a naive com-
bination of transactions and futures, read operations on transactional state inside parallel-for
would not be possible or give inconsistent results, here transactional futures easily deliver the
expected result.

11.5.3 Vacation2. While in the original version of the benchmark a worker actor processes
a reservation in a single transaction, in the modified version some of this work is split off to
‘‘secondary’’ worker actors. Accordingly in the code, we defined the behavior of these new actors
and a part of the original transaction was moved to them. In total, out of 359 lines of code, 25 lines
(7%) were added and 17 lines (5%) were removed. As transactional actors do not introduce new
constructs, the same techniques that are used to introduce actors in a sequential program without
transactions also apply here. Hence, using Chocola developers can reuse their existing knowledge
of the models, because the guarantees of the separate models are maintained.

11.6 Conclusions

Based on these experiments, we draw the following conclusions:

• Of the four benchmarks of the STAMP suite with the longest transactions, in three cases, we
found that we could improve performance by introducing futures or actors. (For the fourth
case, further parallelization is impossible or requires more domain expertise.)
• The improved performance was a result of faster (internally parallel) transactions (Labyrinth
and Bayes), a lower chance and cost of conflicts (Labyrinth and Vacation2), and the ability
to exploit more fine-grained parallelism (Bayes).
• The required effort is mostly due to the introduction of additional parallelism, which would
be necessary even outside a transaction and not due to specific requirements of our tech-
niques. (A notable exception is the definition of the conflict resolution function in Labyrinth.)

These results demonstrate that Chocola enables developers to improve the performance of their
transactional applications with only limited effort. Because Chocola does not introduce any new
constructs, developers can now reuse their existing knowledge of the separate models even when

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:40 J. Swalens et al.

they are combined. Moreover, as our implementation is a relatively simple prototype in Clojure,
further optimizations could decrease its overheads and improve its performance.
It should be possible to apply transactional futures and actors to other STM systems, such as

Haskell or ScalaSTM. In those systems, the studied applications can benefit from parallelism in the
transaction as well and the development effort to introduce them should be similar, but depending
on the implementation the speed-up may be different.

12 RELATED WORK

To the best of our knowledge, no existing literature studies the semantics of combinations of more
than two concurrency models. Below, we describe work related to the pairwise combinations of
the models studied in this article.

Transactions and Futures. We describe existing work that combines transactions and fu-
tures/threads. The most prominent difference between these techniques lies in how they handle
conflicts between tasks in a transaction, which we refer to as ‘‘intratransactional conflicts.’’

Multithreaded transactions [29] are transactions in which threads are forked, and they work
like the naive combination of Section 5.2: Threads do not run within their parent’s transactional
context, permitting race conditions. Nested transactions [8, 50, 51] are transactions created in the
context of another transaction, and several nested transactionsmay run in parallel. In Transactional

Featherweight Java [62], transactions can fork threads that can start a nested transaction, andwhen
the nested transaction commits, its changes are written to its parent. However, intratransactional
conflicts are explicitly forbidden. Both (NPTs) Nested Parallel Transactions (NPTs) [3, 4, 6, 63] and
our transactional futures (TFs) go a step further and solve such conflicts. NPTs resolve conflicts
using the traditional serializability of transactions: When two nested transactions conflict, one
of both will roll back and retry—which of the two is non-deterministic. In contrast, TFs rely on
conflict resolution functions to deterministically solve intratransactional conflicts. Hence, NPTs
forsake determinacy but arguably provide a more consistent semantics.
Independently from ourwork, Zeng et al. [67] developed (JTFs) Java Transactional Futures (JTFs).

Here, an intratransactional conflict causes a future to roll back. Which future is rolled back is
deterministic, as JTFs maintain the semantic transparency of futures [25]. Hence, JTFs guarantee
intratransactional determinacy, like our TFs and unlike NPTs. The three models also have different
performance characteristics: When intratransactional conflicts are prevalent (e.g., in the Labyrinth
benchmark from Section 11.2), TFs will outperformNPTs and JTFs, as rollbacks are avoided. Hence,
our transactional futures forsake semantic transparency to improve performance in these cases.
Finally, Concurrent Revisions [15] and Worlds [64] do not provide transactions, but use a future-

like model to guarantee determinacy for the whole program. Chocola’s semantics of futures in
transactions is inspired by these models: Chocola combines serializable transactions at the top
level with determinate futures within the transactions.

Transactions and Actors. We first look at three approaches that add communication to a trans-
actional system. Transactions with Isolation and Cooperation [55] can temporarily ‘‘suspend’’ their
atomicity and isolation to exchange data, making communication between transactions possible
but breaking the isolation guarantee. Similarly, Transaction Communicators [47] are a special type
of object through which transactions can communicate, but again breaking isolation. Third, Com-

municating Memory Transactions [45] combine transactions with message passing over channels.
When a message is sent, a dependency is introduced from the receiver to the sender, similar to
our approach. However, cyclical dependencies are not prevented and lead to a deadlock. In con-
trast, Chocola prevents cyclical dependencies by making it impossible to receive a message in a
transaction.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:41

Next, we highlight approaches to share memory between actors. Sharing actors [44] and pas-

sive processors [49] can share memory between multiple readers, but only one writer is allowed.
Domains [19] are containers that can be accessed from multiple actors, but writing must happen
asynchronously. Finally, Pony [17] and Encore [13] are languages that allow memory to be shared
between actors, statically preventing race conditions using capabilities.

Futures and Actors. Imam and Sarkar [41] combine actors with the async–finish model (AFM),
which is similar to futures. They allow a task to ‘‘escape’’ its turn (as in Figure 8) and prevent races
by prohibiting this task from modifying the internal memory of its actor. In this model, it is also
possible to coordinate the termination of actors, enabled by the AFM’s finish construct.

13 CONCLUSIONS AND FUTURE WORK

Many programming languages support a wide variety of concurrency models and these are often
combined by developers. In this article, we studied the combination of futures, transactions, and
actors. We found that naive combinations of these models can invalidate the guarantees that they
normally provide, thereby breaking the assumptions of programmers.
We presented Chocola, a language that integrates futures, transactions, and actors into a unified

model that maintains the guarantees of all three models wherever possible, even when they are
combined.We formalized its semantics and proved its guarantees.We also implemented Chocola as
an extension of Clojure and demonstrated that it can improve the performance of three benchmark
applications for relatively little effort from the developer. Hence, using Chocola developers can
freely pick and mix different concurrency models in their program, in each part using the model
that fits best.
To the best of our knowledge, Chocola is the first programming language that combines more

than two concurrency models. It is a first exploration in the design space of such combinations,
focused on preserving the guarantees of separate concurrency models when they are combined.
We highlight some high-level observations and ideas for future research:

• In our work, we have noticed that certain properties of concurrency models make combina-
tions especially problematic, in particular non-determinism and the presence of constructs
that retry or block. However, other properties facilitate combinations, such as determinism
or the absence of side effects. Further exploration of different concurrency models can lead
to a list of such problematic and helpful properties. This can then lead to a table of proper-
ties that do or do not combine well and possible solutions. For instance, using a model with
side effects in a model with retrying operations is a problematic combination, which can be
solved by either forbidding the side effects in those contexts, delaying them, or making it
possible to roll them back.
• Our current base language lacks exceptions: The interactions between concurrency and ex-
ceptions have been the topic of previous research (e.g., for futures [53] and transactions
[33, 34]) and can be challenging due to their non-local control flow, in some cases allowing
an exception to ‘‘escape’’ a future or transaction.
• Our actor model is based on the original actor model of Agha [1], in which actor state can be
updated only using become, which takes effect in the next turn. When using an actor model
that allows mutable state, changes to the actor state in a transaction would need to either be
forbidden (possibly enforced by the type system) or be possible to roll back.
• Some actor models feature an explicit receive statement. To avoid cyclic dependencies,
it should not be possible to receive a (tentative) message while a transaction is active. In
Chocola, whose actor model does not have an explicit receive statement, this is enforced

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:42 J. Swalens et al.

Fig. 17. Concurrency models supported by selected programming languages.

syntactically. In actor models with a receive statement, such a restriction would need to be
enforced in a different manner, e.g., by prohibiting it using the type system.
• Chocola explores only one point in the design space of combinations of concurrency models,
combining futures, transactions, and actors. In future research, it would be interesting to
explore combinations with other concurrency models, such as Concurrent Revisions [15]
(instead of transactions) or Communicating Sequential Processes [38] (instead of actors).

APPENDICES

A LANGUAGE AND LIBRARY SUPPORT FOR CONCURRENCY MODELS

Many programming languages have built-in support for multiple concurrency models. Moreover,
when a concurrency model is not built into the language, developers often build libraries instead.
These claims are supported by the table in Figure 17.

B HELPER FUNCTIONS AND FULL DEFINITIONS OF OPERATIONAL SEMANTICS

This Appendix contains some additional definitions for the formal operational semantics.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:43

Fig. 18. The reduction rules of Lb, the base language.

B.1 Reductions

A reduction of a program e is a sequence of program states p0 → p1 → · · · → pn, with the initial

state p0 as defined in Figure 9. A state p is final if it cannot be further reduced, i.e., p′ : p→ p′.
The notation→? indicates a reduction in zero or one step;→∗ in zero, one or more steps.

B.2 Base Language

Figure 18 defines the reduction relation→b of the base language Lb. The syntax “[v/x] e” denotes
the expression e with all free occurrences of the variable x replaced by the value v . Note that the
do construct is not useful in the functional base language; it becomes useful only when combined
with the side effects introduced in the extensions of the language.

B.3 Syntax and Evaluation Contexts

The full syntax of PureChocola and its evaluation contexts are shown in Figure 19.

B.4 Helper Functions on the Program State

Figure 20 defines three helper functions that extract elements out of the program state:

• actor-tasks(T, a) returns all tasks in the actor with address a.
• actor-txs(T, a) returns the numbers of all transactions that are active (in a task) within actor

a. (Tasks in which no transaction is active do not match the pattern and are thus ignored.)
• tx-futs(T, n) returns the futures of all tasks forked within the transaction with number n.

B.5 Operations to Merge Effects

Figure 21 defines four operations that are used to merge the effects of tasks.

• The operator :: concatenates two maps and is right-preferential.

• beh
?
1 | beh

?
2 (read “behavior 1 otherwise behavior 2”) combines two optional behaviors: It

returns the first if it exists, otherwise the second.
• eff1 += eff2 merges effects on actors from two tasks: The sets of spawned actors are joined
and the behaviors are combined (preferring the second over the first if both exist). This
operation will occur when a task is joined into another.
• ctx1 += ctx2 merges the transactional context of a second (‘‘child’’) task into a first (‘‘parent’’)
task, which occurs when a transactional task is joined into another. We define that:
– The transaction numbers need to be the same: A transactional task can be merged only by
another task in the same transaction.

– The first task is performing the join, so it keeps its snapshot.
– The local store of the second is added to the first, solving conflicts by preferring the version
in the second task. In PureChocola, we do not consider custom conflict resolution functions
(as in Section 5.3), but instead, we always use the default conflict resolution function that
takes the value from the child task.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:44 J. Swalens et al.

Fig. 19. The syntax and evaluation contexts of PureChocola.

Fig. 20. Helper functions to extract elements out of the program state’s set of tasks T.

– The effects on actors of the second are added to the first. In case of conflicting becomes,
the one from the second task is preferred.

C PROOF OF INTRATRANSACTIONAL DETERMINACY

Before proving Intratransactional Determinacy, we first introduce some definitions and then estab-
lish three additional lemmas that prove local determinism, strong local confluence, and confluence.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:45

Fig. 21. The operator :: combines transactional heaps, snapshots, or local stores; | combines optional behav-
iors; += merges effects on actors or transactional contexts.

Fig. 22. A visualization of the four properties proven in Appendix C: with the states and relations in blue
given, the states and relations in orange must hold.

Figure 22 visualizes these properties. This is based on the work of Burckhardt and Leijen [16] and
Budimlić et al. [14].

Definition C.1 (Annotation of Task →f). Every rule in our semantics except receive|c and
turn-end|c corresponds to the reduction of an expression in a single task. We can therefore an-
notate these reductions, using→f , to indicate that they correspond to a reduction in the task with
identifier f .

Definition C.2 (Local and Non-local Reductions). A reduction is local if it accesses (reads or
writes) only information stored in the task that is being reduced. Non-local reductions read
from and/or write to shared data structures (A, μ, τ , σ) or other tasks (in T).

In our reduction rules, local reductions were written using the shorthand T syntax. There are
11 non-local rules: fork|c, join1|c, join2|c, atomic|c, the three commit rules, spawn|c, send|c, receive|c,
and turn-end|c.

Lemma C.3 (Local Determinism). If p1 � p2 and p1 →f p′1 and p2 →f p′2, then p′1 � p′2.

Informally: Any reduction of the program state in a given task leads to equivalent results, as at
each point there is only one possible step to take.

Proof. The program evaluation context P allows a reduction in any task in which one is pos-
sible, representing the non-determinism inherent to the execution of multithreaded programs. It
contains at most one evaluation context E corresponding to the task identified with the future f .
Furthermore, by construction each evaluation context E contains at most one hole. Thus, for a
given future, a program state contains a single redex.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:46 J. Swalens et al.

Given this redex, there is at most one rule that reduces it. First, rules match on the construct
used in the redex. Second, if there are multiple rules for the same construct (which is the case for
join, atomic, and atomic�), they have mutually exclusive conditions. In other words, for a given
p1 and f , at most one reduction rule applies, thereby uniquely defining p′1 up to renaming.

As p1 � p2, both program states reduce using the same transition rule. Because each reduction
rule relies solely on its initial state, besides the creation of identifiers, these rules lead to equivalent
states p′1 � p′2. �

Note: the same theorem and reasoning holds for the equivalence �.

Lemma C.4 (Strong Local Confluence). Given p1 � p2 and p1 →
n

f1 p′1 and p2 →
n

f2 p′2, there

exist equivalent states p′′1 � p′′2 such that p′1 →
n ?

f2
p′′1 and p′2 →

n ?
f1

p′′2 .

Informally: We have a start state in a transaction and can either do a reduction in task 1 or task 2
(both part of the same transaction). We can find a reduction in task 2 to follow the one in task 1
and one in task 1 to follow the one in task 2, so both cases lead to an equivalent end result.

Proof. In the case of f1 = f2, this follows directly from the lemma of local determinism. No
transitions are necessary, i.e., p′′1 = p′1 and p′′2 = p′2. We consider the case f1 � f2.

We distinguish different cases based on the two rules triggered in the reductions. For each com-
bination of a rule triggered in task 1 and one triggered in task 2, we demonstrate that reducing
task 1 followed by task 2 leads to end states equivalent to reducing them in the opposite order.
This is shown in Table 3.

Some rules are grouped or ignored:

• We group all local transition rules (as these do not access shared state).
• The rules atomic|c, receive|c, and turn-end|c apply onlywhen no transaction is running, while
the lemma applies only to reductions in transactions (indicated with→n), so we do not need
to consider them here.
• The commit rules trigger only when a transaction is fully reduced, in which case p1 and

p2 are states ready to commit, and no subsequent reductions within the transaction (→n) are
possible. Hence, they also do not need to be considered.
• Finally, the cases below the diagonal of the table are equivalent to those above the diagonal
with f1 and f2 swapped.

Table 3 considers all remaining cases and states why triggering the rule in the column followed
by the one in the row (i.e., reducing task 1 and then task 2) leads to equivalent end states as reducing
them in the opposite order, thus proving the theorem. �

Note that this proof relies on the equivalence �, indicating that p′′1 and p′′2 are equivalent up
to the ordering of messages only. This exception is needed in the case both tasks trigger the rule
send|c.

Lemma C.5 (Confluence). Given p1 � p2 and p1 →
n ∗ p′1 and p2 →

n ∗ p′2, there exist equivalent

states p′′1 � p′′2 such that p′1 →
n ∗ p′′1 and p′2 →

n ∗ p′′2 .

Informally: In a transaction, we can interleave reductions from different tasks and they can all
lead to the same end result. We can prove this by repeatedly applying the previous lemma.

Proof. The standard technique of Huet [40] to prove confluence from strong local confluence
applies here. �

Theorem C.6 (Intratransactional Determinacy). Given p0 = P[atomic� e], if p0 →
n ∗ p1

and p0 →
n ∗ p2, with p1 and p2 states ready to commit transaction n, then p1 � p2.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:47

Table 3. Combinations of Rules

↓ 2→ 1 local join1|2|c fork|c send|c spawn|c
Accessed
shared
state

None Joined task is
read

Forked task is
added

Message is
added to
receiver’s inbox

Inbox is
created

local The rules
affect
independent
parts of the
state and thus
commute.

As it is
impossible to
join a task that
has not been
fully reduced to
a value, join in
task 1 cannot
be joining task
2, in which a
further
reduction is
possible. Both
reductions are
therefore
independent.

The reduction in
task 2 is local.

The reduction in
task 2 is local.

spawn
creates
an inbox
with a
unique
identi-
fier,
thereby
not af-
fecting
other
tasks.

join1|2|c (commutative) join in task 1
cannot join the
new task created
by fork in task
2, as it does not
have access to
its future. Hence,
both rules must
affect different
tasks.

They affect
independent
parts of the state:
send writes to
an inbox; fork
and join read
and write to
different tasks.

fork|c (commutative) (commutative) Both tasks
independently
create a task
(each with a
unique future).

send|c (commutative) (commutative) (commutative) (!) Both rules
append a
message to an
inbox. If they
send to the same
actor, the order
in which
messages are
added may differ.
This is allowed
by the
equivalence �.

spawn|c (commutative) (commutative) (commutative) (commutative)

We show that first reducing task 1 using the rule in the column, followed by reducing task 2 using the rule in the row, leads to equivalent

results as reducing them in the opposite order (except for the order in which messages are sent). We also list which shared state is accessed

in each transition.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:48 J. Swalens et al.

Informally: A transaction starts and then evaluates until the point just before it commits. Any
state it can reach is equivalent, except for the order in which messages are sent. In other words, dif-
ferent evaluationsmight take different steps during the reduction of the transaction, but eventually
they will all lead to equivalent end results just before the commit.

Proof. Given p0 →
n ∗ p1 and p0 →

n ∗ p2, the confluence theorem states that there exist equivalent
states p′1 � p′2 such that p1 →

n ∗ p′1 and p2 →
n ∗ p′2. However, as p1 and p2 are states ready to commit

transaction n, no further intratransactional reductions within the transaction n are possible, so it
must be that p1 = p′1 and p2 = p′2, and thus p1 � p2 as claimed. �

Note that P[atomic� e]must not necessarily be the start of the transaction: It can be any inter-
mediate state during the reduction of the transaction.

D PROOF OF SNAPSHOT ISOLATION

Like Clojure, Chocola provides snapshot isolation. Asmentioned in Section 2.2.4, Berenson et al. [9]
define snapshot isolation as the absence of five anomalies. These anomalies are defined as patterns
that may not appear in the program’s transactional history in Table 4, based on the definitions of
Berenson et al. [9].

Definition D.1 (Transactional History Pattern). A transactional history pattern is a pattern
that describes a set of transactional histories. It is a sequence of transactional operations in which:

• x and y refer to any two different variables,
• vi and vj refer to any two different values (for i � j),
• 1 and 2 refer to any two different transaction attempts,
• the construct “. . . ” elides parts of the history, and
• the construct “or” indicates a choice between operations.

A transactional history matches a pattern if any part of the history is described by the pattern.

Table 4. Five Anomalies and Their Corresponding Transactional History Pattern

Anomaly Transactional history pattern

Dirty read x ←1 v1 . . . x →2 v1 . . .�1 or ×1
Dirty write x ←1 v1 . . . x →2 v1 . . . x ←2 v2 . . .�1 or ×1
Non-repeatable read x →1 v1 . . . x ←2 v2 . . . x →1 v2
Lost update x ←1 v1 . . . x ←2 v2 . . .�2 . . .�1

Read skew x →1 vx,1 . . . x ←2 vx,2 . . .y ←2 vy,2 . . .�2 . . .y →1 vy,2

Theorem D.2 (Snapshot Isolation). Lt provides snapshot isolation, i.e., the transactional history

of any program reduction does not contain dirty reads, dirty writes, non-repeatable reads, lost updates,

or read skew.

We prove this theorem by proving each constituent property separately.

Lemma D.3 (No Dirty Reads). Program reductions contain no dirty reads: Their history cannot

match the pattern x ←1 v1 . . . x →2 v1 . . . (�1 or ×1).

Proof. The write operation of v1 in transaction 1 is stored in its local store (rule ref-set|c),
which is made visible to other transactions only when transaction 1 commits successfully (rule
commit� |c). When transaction 2 starts, it copies the current transactional heap into a snapshot

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:49

(rule atomic|c), which contains the previous value of x and not yetv1. The read operation x →2 v1
is therefore impossible. �

Lemma D.4 (No Dirty Writes). Program reductions contain no dirty writes: Their history cannot

match the pattern x ←1 v1 . . . x →2 v1 . . . x ←2 v2 . . . (�1 or ×1).

Proof. The write in transaction 1 is stored in its local store (rule ref-set|c) and is therefore not
visible to transaction 2 before transaction 1 committed. The read operation x →2 v1 is therefore
impossible. �

Lemma D.5 (No Non-repeatable Reads). Program reductions contain no non-repeatable reads:

Their history cannot match the pattern x →1 v1 . . . x ←2 v2 . . . x →1 v2.

Proof. When transaction 1 starts, it copies the transactional heap into a snapshot (rule atomic|c).
All read operations in the transaction look up values in the transaction’s local store and this snap-
shot (rule deref|c). Hence, the value v2 is not visible in transaction 1. �

Lemma D.6 (No Lost Updates). Program reductions contain no lost updates: Their history cannot

match the pattern x ←1 v1 . . . x ←2 v2 . . .�2 . . .�1.

Proof. When transaction 1 starts, it copies the transactional heap into a snapshot (rule atomic|c),
containing the original value of variable x . When transaction 2 commits, it stores the value v2 in
the heap. When transaction 1 attempts to commit afterwards, it encounters a conflict: The valuev2
in the heap no longer matches the value in transaction 1’s snapshot. The rule commit×|c therefore
applies and transaction 1 aborts. �

LemmaD.7 (No Read Skew). Read skew is prevented: The history of any program reduction cannot

match the pattern x →1 vx,1 . . . x ←2 vx,2 . . .y ←2 vy,2 . . .�2 . . .y →1 vy,2.

Proof. When transaction 1 starts, it copies the transactional heap into a snapshot (rule atomic|c),
in which variables x and y have the original values vx,1 and vy,1, respectively. Even after trans-
action 2 commits, this snapshot remains unmodified. When transaction 1 reads y (final operation
in the pattern), it looks up its value in its snapshot (rule deref|c), which returns vy,1 and not vy,2,
preventing read skew. �

Proof of Snapshot Isolation. As each constituent property holds, snapshot isolation holds,
too. �

E PROOF OF CONSISTENT TURN PRINCIPLE

Theorem E.1 (Consistent Turn Principle). PureChocola provides the consistent turn principle,

i.e., it guarantees continuous message processing, consecutive message processing, and isolation of

actor memory.

We prove this theorem by proving each constituent property separately.

Lemma E.2 (Continuous Message Processing). An actor’s turn is free from deadlocks.

Proof. See Deadlock Freedom of Transactional Actors in Section F.2. �

Lemma E.3 (Consecutive Message Processing). For each actor, at each step in the reduction at

most one turn is active.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:50 J. Swalens et al.

Proof. A turn corresponds to the processing of a message, which starts when the rule receive|c
is triggered. We will prove that at most one turn is active per actor. We do this in two steps: First,
we show that each turn has fully ended when the rule turn-end|c triggers (so no tasks ‘‘escape’’
the turn in which they were forked); second, we show no new turn starts during the reduction of
a previous turn.
For the first step, observe that the rule turn-end|c applies only when the root task has been fully

reduced to a value (v in definition of taskroot) and all futures forked in the root task have been
joined (condition Fc ⊆ Fj). Furthermore, these futures could have been joined only if they joined
their respective children (condition F∗c ⊆ F∗j in rule join). This applies recursively, ensuring that all

tasks created in the current actor during the current turn have been joined. A task can be joined
only if it has been reduced to a value, after which no further reductions of that task are possible.
Hence, when the rule turn-end|c triggers, no further reductions are possible in any task created in
the turn. (This proves the absence of the problem of tasks ‘‘escaping’’ the turn they were forked
in, described in Section 7.)
For the second step, observe that the rule receive|c requires an actor to be in an idle state, by

requiring its root task (f ?
root) to be •. There are only two rules that cause an actor to be idle: spawn|c

and turn-end|c. The rule receive|c is thus never applicable while another turn is active, meaning
that it is impossible for a new turn to start while another is active. �

Lemma E.4 (Isolation of Actor Memory). The internal memory of an actor is isolated: After

the actor’s creation, its internal memory can be read and written only by the actor itself.

Proof. The internal memory of an actor consists of the values v stored in its behavior beh. It
is accessed in the following transition rules:

• The rule receive|c reads the internal memory, replacing all corresponding variables in the
turn’s body with these values in a single step (function bind). The actor thus reads its own
memory.
• In the rule turn-end|c, the effect of become operations that occurred during the turn are
stored in the internal memory. (Note that any become during a turn is first stored locally in
the task or transaction, and only effectively stored in the actor at the end of the turn.) Again,
the actor is modifying its own memory.
• In the rule spawn|c, the internal memory is initialized as the actor is created. As indicated in
the theorem, we discount operations that take place during the actor’s creation.

Hence, after an actor is created, its internal memory is read and modified only by the actor
itself. �

This lemma can be generalized: Not only the internal memory of an actor is isolated, but all of
its behavior beh, so also its behavior definition (its code).

Proof of the Consistent Turn Principle. As each constituent property holds, the consis-
tent turn principle holds, too. �

F PROOF OF DEADLOCK FREEDOM

In this Appendix, we prove the deadlock freedom of futures and transactional actors, as defined in
Section 9.3.4.

F.1 Deadlock Freedom of Futures

A task that encounters join waits until the given future has resolved, so we must ensure this can
never lead to a deadlock. In this section, we look at individual turns and prove that there is a total

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:51

order on the futures created in a turn, thereby preventing deadlocks. We assume the program does
not exchange futures in transactional memory. We first introduce a few definitions.

Definition F.1 (Deadlock). A program state p = A, T, μ, τ , σ is in deadlock if there exists a
subset of “deadlocked” futures Fdl ⊂ Future and a permutation π : Fdl → Fdl representing the
dependencies between them, such that ∀fi ∈ Fdl : 〈fi , ai , E[join π (fi)], Fc,i , Fj,i , effi , ctx?

i
〉 ∈ T (i.e.,

each task is joining the next future in the permutation).

Note that the existence of such a permutation implies a cycle in the dependencies between
futures. If there is no cycle in the dependencies between futures, no such permutation π exists and
therefore no deadlock can occur.
Note also that π � id, because this implies each future is joining itself, but a task does not have

access to its own future. (This is in fact also proven by the lemma below.)
A task can join only futures it can reach. We define the notion of reachable futures:

Definition F.2 (Reachable Futures
�
Fi). Given a program state p = A, T, μ, τ , σ , we say the set of

reachable futures
�
Fi is the set of futures to which taski ∈ T can refer.

This definition does not say which futures a task can reach: It is not immediately obvious how,

given a program state, the set
�
Fi can be constructed. We first introduce two more definitions.

Definition F.3 (Root Task and Fork Tree). Each turn starts with the creation of one task, in the
rule receive|c, which we refer to as the root task of that turn. (The future of this root task is stored
in the actor for the duration of the turn.) Each task can fork child tasks. Hence, all tasks forked
during a turn can be represented as a tree, which we refer to as the turn’s fork tree.20

Definition F.4 (Post-order Notation). Writing a tree in post-order notation consists of perform-
ing a depth-first traversal of the tree and writing down a node after having visited its children.
The post-order notation of a tree thus defines a unique order of the nodes in the tree so: (1) a node
appears after all of its children, (2) later siblings appear after earlier siblings.

The following lemma states how
�
Fi can be constructed: Within a turn, a task can reach the

futures of tasks from the same turn that precede it in the post-order notation of the turn’s fork
tree.

Lemma F.5. If a program does not read futures from transactional memory, then taski ’s set of

reachable futures
�
Fi consists of (at most) the futures of the tasks that precede taski in the post-order

notation of the fork tree of the turn in which taski was forked.

Proof. By considering the rules in our language, we observe that the following rules modify

the set
�
Fi (by making futures from other tasks reachable in taski):

(1) fork|c: A newly forked task is reachable by its parent, i.e., when taski forks a new future fj ,

its set of reachable futures is extended with fj . Hence
�
F′i =

�
Fi ∪ {fj }. The set of reachable

futures
�
Fj of the new taskj is a copy of the reachable futures

�
Fi of its parent before it was

extended. Hence,
�
F′j =

�
Fi . This implies the new task has access to all previous children of its

parent, i.e., its earlier siblings. The same is true recursively up the fork tree: It has access to
the earlier siblings of all its ancestors.

20Blumofe et al. [11] refer to this as a spawn tree; Lee and Palsberg [43] call it an execution tree.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

17:52 J. Swalens et al.

(2) join1|c and join2|c: When taski joins the future fj , its set of reachable futures is extended with
�
Fj , the set from the joined task. This is because the task can return any future to which it

had access. Hence:
�
F′i =

�
Fi ∪

�
Fj .

(3) receive|c: As we consider only the fork tree formed within a turn in this lemma, no receive
rules are triggered for the current actor for the reduction of the current turn.

(4) atomic|c: The set
�
Fi can be extended by reading futures from the transactional memory. How-

ever, we explicitly assume this does not occur for this lemma.

We now prove that these observations result in the set of reachable futures as stated in the

lemma. The fork rule (1) implies that the set
�
Fi contains at least all children, earlier siblings, and

earlier siblings of ancestors of taski . The join rule (2) implies that, as taski can join any of its

reachable futures, it can reach any of those futures’ reachable futures, i.e.,
�
Fi can be extended with

any
�
Fj for which fj ∈

�
Fi . This applies transitively, allowing

�
Fi to be extended with its transitive

closure.
This all corresponds exactly to the order indicated in the post-order notation of the fork tree,

which is the unique order of taskswithin the turn such that (1) a task appears after all of its children,
(2) siblings appear in the order they are forked. �

Theorem F.6 (Deadlock Freedom of Futures). Assuming no futures are stored in transactional

memory, the tasks created within a turn cannot deadlock. A set of tasks is deadlocked if each task in

the set is waiting for the future of another task created in the same turn to be resolved.

Proof. A task can only wait for a future to be resolved if it can reach the future. A task has
access only to futures of tasks that precede it in the post-order notation of the fork tree. This
defines a total order on the futures within a turn, therefore there cannot be a cyclical dependency
between tasks and thus deadlocks cannot occur. �

F.2 Deadlock Freedom of Transactional Actors

Remember that messages sent in a transaction are tentative, carrying a dependency ndep on a
transaction attempt. (A dependency does not point to a transaction, but to an individual attempt
of a transaction.) The turn that processes such a message is a tentative turn.
In a tentative turn, the rules commit� |c, commit•|c, and turn-end|c wait until the dependency has

finished its reduction and has either committed or aborted.We first discuss the conditions in which
these rules block and then prove that deadlocks are impossible, because cyclical dependencies are
impossible.

turn-end|c. An actor can block at the end of a tentative turn, waiting for its dependency to be
resolved. This is encoded in the rule turn-end|c by checkingwhether the dependency has succeeded
or failed (τ (n?

dep
) = 〈�, e〉 or 〈×, e〉). While the transaction is still running (τ (n?

dep
) = 〈�, e〉), none

of both conditions is satisfied, so this rule is not applicable, nor is any other rule.
When the rule turn-end|c is triggered, the turn’s root task has been fully reduced to a value,

and therefore no transaction is active (the root task’s transactional context is •). Hence, cyclical
dependencies are impossible: The reduction of the current task depends on the reduction of a
transaction, but vice versa the reduction of that transaction can not depend on the reduction of
the current task, as there is no transaction in the current task.

commit� |c and commit•|c. After a transaction has finished its reduction, one of three commit
rules applies:

• the rule commit×|c applies if the transaction conflicts with another;

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

Chocola: Composable Concurrency Language 17:53

• the rule commit� |c applies if the transaction does not conflict, and has either no dependency
or the dependency has succeeded;
• the rule commit•|c applies if the dependency aborted.

If there is a dependency but it is still running (τ (ndep) = 〈�, e〉), none of the three rules apply and
therefore the current task waits until the dependency has either committed or aborted.
Below, we prove that cyclical dependencies are impossible, as the current transaction attempt

(with number n in the rule) is always newer than the dependency (ndep).
At the start of every transaction attempt, in the rule atomic|c, a fresh transaction number n

is generated. We suppose that this process generates strictly increasing numbers.21 Newer trans-
action attempts thus have higher numbers. We will show that dependencies always point from
higher (newer) to lower (older) transaction numbers.

Theorem F.7 (Deadlock Freedom of Transactional Actors). Deadlocks between transac-

tions in tentative turns are impossible, as dependencies always go from newer to older transaction

attempts, defining a total order on the transaction attempts.

Proof. First, observe that a transaction starts and commits within the same turn: When a trans-
action attempt is started (rule atomic|c) it inserts the expression atomic� e in the current evaluation
context, in the following reduction steps e is reduced, after which the transaction commits (using
one of the commit rules).
Second, observe that a dependency is always introduced at the start of a turn: In the rule receive|c,

a potential dependency n?
dep

from the received message is stored in the current actor. It is removed

at the end of the turn (rule turn-end|c).
Hence, when a transaction commits in a tentative turn, the number n of the current transaction

was created in the current turn, while the number ndep of the dependency already existed before
the turn started. The dependency must therefore be older than the current transaction. �

REFERENCES

[1] Gul A. Agha. 1985. Actors: A Model of Concurrent Computation in Distributed Systems. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

[2] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. 1997. A foundation for actor computation. J. Funct.

Prog. 7, 1 (1997), 1–72.

[3] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. 2008. Nested parallelism in transactional memory. In Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’08). 163–174. DOI:
https://doi.org/10.1145/1345206.1345232

[4] Woongki Baek, Nathan Bronson, Christos Kozyrakis, and Kunle Olukotun. 2010. Implementing and evaluating nested

parallel transactions in software transactional memory. In Proceedings of the 22nd ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA’10). 253–262. DOI: https://doi.org/10.1145/1810479.1810528
[5] Henry C. Baker and Carl Hewitt. 1977. The incremental garbage collection of processes. In Proceedings of the Sympo-

sium on Artificial Intelligence and Programming Languages. 55–59. DOI: https://doi.org/10.1145/800228.806932
[6] João Barreto, Aleksandar Dragojević, Paulo Ferreira, Rachid Guerraoui, and Michal Kapalka. 2010. Leveraging parallel

nesting in transactional memory. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP’10). 10. DOI: https://doi.org/10.1145/1693453.1693466
[7] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence Tratt. 2017. Virtual machine

warmup blows hot and cold. Proc. ACM Prog. Lang. 1, OOPSLA (Oct. 2017).

[8] Catriel Beeri, Philip A. Bernstein, andNathanGoodman. 1989. Amodel for concurrency in nested transactions systems.

J. ACM 36, 2 (Apr. 1989), 230–269. DOI: https://doi.org/10.1145/62044.62046

21Something similar happens in the implementation of the MVCC algorithm: At the start of each transaction attempt, the

value of a logical clock is stored.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://doi.org/10.1145/1345206.1345232
https://doi.org/10.1145/1810479.1810528
https://doi.org/10.1145/800228.806932
https://doi.org/10.1145/1693453.1693466
https://doi.org/10.1145/62044.62046

17:54 J. Swalens et al.

[9] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A critique of ANSI

SQL isolation levels. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’95).

1–10. DOI: https://doi.org/10.1145/223784.223785
[10] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency control in distributed database systems. Comput. Surv.

13, 2 (June 1981), 185–221. DOI: https://doi.org/10.1145/356842.356846
[11] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.

1995. Cilk: An efficientmultithreaded runtime system. In Proceedings of the 5th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPOPP’95). 207–216. DOI: https://doi.org/10.1145/209936.209958
[12] Robert L. Bocchino, Vikram S. Adve, Sarita V. Adve, and Marc Snir. 2009. Parallel programming must be deterministic

by default. In Proceedings of the 1st USENIX Conference on Hot Topics in Parallelism (HotPar’09).

[13] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen, Ka I. Pun,

S. Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. 2015. Parallel objects for multicores: A glimpse

at the parallel language encore. In Proceedings of the 15th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems (SFM’15). 1–56.

[14] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton, Jens Palsberg, David

Peixotto, Vivek Sarkar, Frank Schlimbach, and Sağnak Taşırlar. 2010. Concurrent collections. Sci. Prog. 18, 3–4 (Aug.

2010), 203–217. DOI: https://doi.org/10.1155/2010/521797
[15] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. 2010. Concurrent programming with revisions and iso-

lation types. In Proceedings of the ACM International Conference on Object -oriented Programming Systems Languages

and Applications (OOPSLA’10). 691–707. DOI: https://doi.org/10.1145/1869459.1869515
[16] Sebastian Burckhardt and Daan Leijen. 2011. Semantics of concurrent revisions. In Proceedings of the European Sym-

posium on Programming (ESOP’11). 116–135.

[17] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. 2015. Deny capabilities for safe, fast

actors. In Proceedings of the 5th International Workshop on Programming Based on Actors, Agents, and Decentralized

Control (AGERE’15). 1–12. DOI: https://doi.org/10.1145/2824815.2824816
[18] Joeri De Koster. 2015. Domains: Language Abstractions for Controlling Shared Mutable State in Actor Systems. Ph.D.

Dissertation. Vrije Universiteit Brussel.

[19] J. De Koster, S. Marr, T. Van Cutsem, and T. D’Hondt. 2016. Domains: Sharing state in the communicating event-loop

actor model. Comput. Lang., Syst. Struct. 45 (2016), 132–160. DOI: https://doi.org/10.1016/j.cl.2016.01.003
[20] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43 years of actors: A taxonomy of actor models

and their key properties. In Proceedings of the 6th International Workshop on Programming Based on Actors, Agents,

and Decentralized Control (AGERE’16). 31–40. DOI: https://doi.org/10.1145/3001886.3001890
[21] Peter J. Denning and Jack B. Dennis. 2010. The resurgence of parallelism. Commun. ACM 53, 6 (June 2010), 30–32.

[22] E. W. Dijkstra. 1965. Solution of a problem in concurrent programming control. Commun. ACM 8, 9 (Sept. 1965), 569.

DOI: https://doi.org/10.1145/365559.365617
[23] Eitan Farchi, Yarden Nir, and Shmuel Ur. 2003. Concurrent bug patterns and how to test them. In Proceedings of

the International Parallel and Distributed Processing Symposium (IPDPS’03). DOI: https://doi.org/10.1109/IPDPS.2003.

1213511

[24] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. The MIT

Press.

[25] Cormac Flanagan and Matthias Felleisen. 1995. The semantics of future and its use in program optimization. In Pro-

ceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’95). 209–220.

[26] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous Java performance evaluation. In Pro-

ceedings of the 22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications (OOPSLA’07).

57–76.

[27] Patrice Godefroid and Nachi Nagappan. 2008. Concurrency at Microsoft—An Exploratory Survey. Technical Report.

Retrieved from: https://www.microsoft.com/en-us/research/publication/concurrency-at-microsoft-an-exploratory-

survey/.

[28] Rachid Guerraoui and Michał Kapałka. 2008. On the correctness of transactional memory. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’08). 175–184. DOI: https://doi.

org/10.1145/1345206.1345233

[29] Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles, and Jeannette M. Wing. 1994. Composing

first-class transactions. ACM Trans. Prog. Lang. Syst. 16, 6 (Nov. 1994), 1719–1736. DOI: https://doi.org/10.1145/197320.
197346

[30] Stuart Halloway. 2009. Programming Clojure (1st ed.). Pragmatic Bookshelf.

[31] Robert H. Halstead. 1985. MULTILISP: A language for concurrent symbolic computation. ACM Trans. Prog. Lang. Syst.

7, 4 (Oct. 1985), 501–538. DOI: https://doi.org/10.1145/4472.4478

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/209936.209958
https://doi.org/10.1155/2010/521797
https://doi.org/10.1145/1869459.1869515
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1016/j.cl.2016.01.003
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/365559.365617
https://doi.org/10.1109/IPDPS.2003.1213511
https://www.microsoft.com/en-us/research/publication/concurrency-at-microsoft-an-exploratory-
survey/
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/197320.197346
https://doi.org/10.1145/4472.4478

Chocola: Composable Concurrency Language 17:55

[32] Tim Harris and Keir Fraser. 2003. Language support for lightweight transactions. In Proceedings of the 18th ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA’03). 388–402.

DOI: https://doi.org/10.1145/949305.949340
[33] Tim Harris, James R. Larus, and Ravi Rajwar. 2010. Transactional Memory (2nd ed.). Morgan & Claypool.

[34] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. 2005. Composable memory transactions. In

Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’05). 48–60.

DOI: https://doi.org/10.1145/1065944.1065952
[35] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: Architectural support for lock-free data structures.

In Proceedings of the 20th International Symposium on Computer Architecture (ISCA’93). 289–300.

[36] Maurice Herlihy and Nir Shavit. 2011. The Art of Multiprocessor Programming. Morgan Kaufmann.

[37] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal modular ACTOR formalism for artificial intelligence.

In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI’73). 235–245.

Retrieved from: http://dl.acm.org/citation.cfm?id=1624775.1624804.

[38] C. A. R. Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978), 666–677. DOI: https:

//doi.org/10.1145/359576.359585

[39] David Hovemeyer and William Pugh. 2004. Finding concurrency bugs in Java. In Proceedings of the PODC Workshop

on Concurrency and Synchronization in Java Programs.

Retrieved from: https://www.cs.jhu.edu/~daveho/pubs/csjp2004.pdf.

[40] Gérard Huet. 1980. Confluent reductions: Abstract properties and applications to term rewriting systems: Abstract

properties and applications to term rewriting systems. J. ACM 27, 4 (Oct. 1980), 797–821. DOI: https://doi.org/10.1145/
322217.322230

[41] Shams M. Imam and Vivek Sarkar. 2012. Integrating task parallelism with actors. In Proceedings of the ACM Interna-

tional Conference on Object-oriented Programming Systems Languages and Applications (OOPSLA’12). 753–772.

[42] Edward A. Lee. 2006. The problem with threads. Computer 39, 5 (May 2006), 33–42. DOI: https://doi.org/10.1109/MC.

2006.180

[43] Jonathan K. Lee and Jens Palsberg. 2010. Featherweight X10: A core calculus for async-finish parallelism. In Proceed-

ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’10). 25–36. DOI:
https://doi.org/10.1145/1693453.1693459

[44] M. Lesani and A. Lain. 2013. Semantics-preserving sharing actors. In Proceedings of the Workshop on Programming

Based on Actors, Agents, and Decentralized Control (AGERE’13). 69–80.

[45] M. Lesani and J. Palsberg. 2011. Communicating memory transactions. In Proceedings of the 16th ACM Symposium on

Principles and Practice of Parallel Programming (PPoPP’11). 157–168.

[46] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from mistakes—A comprehensive study on

real world concurrency bug characteristics. In Proceedings of the 13th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS’08). 329–339. DOI: https://doi.org/10.1145/1346281.

1346323

[47] V. Luchangco and V. J. Marathe. 2011. Transaction communicators: Enabling cooperation among concurrent trans-

actions. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming (PPoPP’11).

169–178.

[48] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and K. Olukotun. 2008. STAMP: Stanford transactional applications

for multi-processing. In Proceedings of the IEEE International Symposium on Workload Characterization. 35–46. DOI:
https://doi.org/10.1109/IISWC.2008.4636089

[49] B. Morandi, S. Nanz, and B. Meyer. 2014. Safe and efficient data sharing for message-passing concurrency. In Proceed-

ings of the 16th International Conference on Coordination Models and Languages (COORDINATION’14). 99–114.

[50] J. Eliot B. Moss. 1981. Nested Transactions: An Approach to Reliable Distributed Computing. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

[51] J. Eliot B. Moss and Antony L. Hosking. 2006. Nested transactional memory: Model and architecture sketches. Sci.

Comput. Prog. 63, 2 (2006), 186–201.

[52] Michael Nash andWadeWaldron. 2016.Applied Akka Patterns: A Hands-On Guide to Designing Distributed Applications

(1st ed.). O’Reilly Media, Inc.

[53] Armand Navabi and Suresh Jagannathan. 2009. Exceptionally safe futures. In Proceedings of the 11th International

Conference on Coordination Models and Languages (COORDINATION’09). 47–65.

[54] Nir Shavit and Dan Touitou. 1997. Software transactional memory. Distrib. Comput. 10, 2 (Feb. 1997), 99–116. DOI:
https://doi.org/10.1007/s004460050028

[55] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. 2007. Transactions with isolation and cooperation. In Proceedings

of the 22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications (OOPSLA’07). 191–210.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://doi.org/10.1145/949305.949340
https://doi.org/10.1145/1065944.1065952
http://dl.acm.org/citation.cfm?id=1624775.1624804
https://doi.org/10.1145/359576.359585
https://www.cs.jhu.edu/~daveho/pubs/csjp2004.pdf
https://doi.org/10.1145/322217.322230
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1145/1693453.1693459
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1007/s004460050028

17:56 J. Swalens et al.

[56] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. 2016. Transactional tasks: Parallelism in software

transactions. In Proceedings of the 30th European Conference on Object-oriented Programming (ECOOP’16). 23:1–23:28.

DOI: https://doi.org/10.4230/LIPIcs.ECOOP.2016.23
[57] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. 2017. Transactional actors: Communication in trans-

actions. In Proceedings of the 4th ACM SIGPLAN International Workshop on Software Engineering for Parallel Systems

(SEPS’17). 31–41. DOI: https://doi.org/10.1145/3141865.3141866
[58] Janwillem Swalens, Stefan Marr, Joeri De Koster, and Tom Van Cutsem. 2014. Towards composable concurrency

abstractions. In Proceedings of the Workshop on Programming Language Approaches to Concurrency and communication-

cEntric Software (PLACES’14). DOI: https://doi.org/10.4204/EPTCS.155.8
[59] Andrew S. Tanenbaum and Herbert Bos. 2014. Modern Operating Systems (4th ed.). Prentice Hall Press.

[60] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. 2013. Why do Scala developers mix the actor model with other

concurrency models? In Proceedings of the 27th European Conference on Object-oriented Programming (ECOOP’13).

302–326. DOI: https://doi.org/10.1007/978-3-642-39038-8_13
[61] Peter Van Roy and Seif Haridi. 2004. Concepts, Techniques, and Models of Computer Programming. The MIT Press.

[62] Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L. Hosking. 2004. A semantic framework for designer trans-

actions. In Proceedings of the 13th European Symposium on Programming (ESOP’04). 249–263.

[63] Haris Volos, Adam Welc, Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, Xinmin Tian, and Ravi Narayanaswamy. 2009.

NePalTM: Design and implementation of nested parallelism for transactional memory systems. In Proceedings of the

14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’09). 291–292. DOI: https:

//doi.org/10.1145/1504176.1504220

[64] Alessandro Warth, Yoshiki Ohshima, Ted Kaehler, and Alan Kay. 2011. Worlds: Controlling the scope of side effects.

In Proceedings of the 25th European Conference on Object-oriented Programming (ECOOP’11). 179–203.

[65] Adam Welc, Suresh Jagannathan, and Antony Hosking. 2005. Safe futures for Java. In Proceedings of the 20th ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA’05). 439–453.

DOI: https://doi.org/10.1145/1094811.1094845
[66] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. 1986. Object-oriented concurrent programming in AB-

CL/1. In Proceedings of the Conference Proceedings on Object-oriented Programming Systems, Languages and Applications

(OOPSLA’86). 258–268. DOI: https://doi.org/10.1145/28697.28722
[67] Jingna Zeng, Joao Barreto, Seif Haridi, Luís Rodrigues, and Paolo Romano. 2016. The future(s) of transactional memory.

In Proceedings of the 45th International Conference on Parallel Processing (ICPP’16). 442–451. DOI: https://doi.org/10.

1109/ICPP.2016.57

[68] Yang Zhang and Eric A. Hansen. 2006. Parallel breadth-first heuristic search on a shared-memory architecture. In

Proceedings of the Workshop on Heuristic Search, Memory-based Heuristics and Their Applications (AAAI’06).

Received January 2020; revised July 2020; accepted September 2020

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 4, Article 17. Publication date: January 2021.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.23
https://doi.org/10.1145/3141865.3141866
https://doi.org/10.4204/EPTCS.155.8
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1145/1504176.1504220
https://doi.org/10.1145/1094811.1094845
https://doi.org/10.1145/28697.28722
https://doi.org/10.1109/ICPP.2016.57

