
Towards Composable
Concurrency Abstractions

Janwillem Swalens
Stefan Marr
Joeri De Koster
Tom Van Cutsem

Complex GUI applications
need concurrency

2

Different concurrency models
for different requirements

Concurrency models are combined
3

STM

actors

futures

atomic
integer

[1] Samira Tasharofi, Peter Dinges, and Ralph Johnson. Why Do Scala Developers Mix the!
Actor Model with Other Concurrency Models? In Proc. of ECOOP’13, Montpellier, France, 2013. !

[1]

SMTP
Sender

SMTP
Receiver

MAIL FROM

RCPT TO

DATA

Message (line by line)

.

250

250

354

250

Source: tcpipguide.com

CSP

Can concurrency
models be combined

correctly?!
!

Are they
composable?

“composable”?
Criteria:

• Safety: partial correctness 
correct input → incorrect output

• Liveness: termination  
correct input terminates

Two models are composable if combining them
cannot produce new safety or liveness issues.

correct input
↓ eventually

correct output}
5[2] Leslie Lamport. Proving the Correctness of Multiprocess Programs.!

IEEE Transactions on Software Engineering, SE-3(2):125–143, 1977. !

[2]

Safety and liveness issues
Safety:

→ Race conditions: incorrect results 
 caused by bad interleavings

Liveness:

→ Deadlocks: introduced by blocking  
 operations ⊗

→ Livelocks: code is re-executed under 
 a certain condition ↺

6

forever

forever

x = 0

a = x
b = a + 1

x = b

c = x

d = c + 1
x = d

x = 0

a = x
b = a + 1
x = b

c = x
d = c + 1
x = d

� x = 1 ✘ � x = 2 ✔

Concurrency models
• Atomics

• Actors & Agents

• Software Transactional Memory (STM)

• Futures & Promises

• Communicating Sequential Processes (CSP)

→ Clojure

7

Atomic variables
(def unread-mails (atom 15))!
(println (deref unread-mails))!
(reset! unread-mails 0)!
(swap! unread-mails inc)

8

atoms
create atom

read deref

write reset!

swap! ↺

Agents
(def notifications (agent ‘()))!
(println (deref notifications))!
(send notifications!
! (fn [msgs] (cons “Hello!” msgs)))!
(await notifications)

9

atoms agents
create atom agent

read deref deref

write reset!

swap! ↺ send

other await ⊗

'()

Software Transactional
Memory

(def mail (ref {:subject “Hi!”}))!
(dosync!
! (println (deref mail))!
! (ref-set mail {:subject “Hello!”})!
! (alter mail (fn [m] (assoc m :subject “Hey!”))))

10

atoms agents STM
create atom agent ref

read deref deref deref

write reset! ref-set

swap! ↺ send alter

block dosync ↺
other await ⊗

Safety issues

11

Safety
atoms agents STM futures

promises CSP

atoms ✘ ✘ ✘ ✘ ✘

agents ✔ ✔ ✔ ✔ ✔

STM ✘ ✔ ✔ ✘ ✘

futures
promises ✔ ✔ ✔ ✔ ✔

CSP ✔ ✔ ✔ ✔ ✔

used
in

(def notifications (agent ‘()))!
(def unread-mails (atom 0))!
(swap! unread-mails!
 (fn [n]!
 (send notifications  
 (fn [msgs] (cons "New mail!" msgs)))!
 (inc n)))

(def notifications (agent ’()))  
(def mail (ref {:subject "Hi" :archived false}))!
(dosync  
 (ref-set mail (assoc @mail :archived true))!
 (send notifications!
 (fn [msgs] (cons (str "Archived mail "!
 (:subject @mail)) msgs))))

Outer model re-executes!
Inner model irrevocable actions}⇒ bad interleavings!

⇒ unsafe

Futures & Promises
(def thumbnail (future (generate-thumbnail “attach.pdf”)))!
(println (deref thumbnail))!
!
(def p (promise))!
(deliver p 2)!
(println (deref p))

12

atoms agents STM futures promises
create atom agent ref future promise

read deref deref deref deref ⊗ deref ⊗

write reset! ref-set deliver

swap! ↺ send alter

block dosync ↺
other await ⊗

Communicating Sequential
Processes

(def incoming-mails (chan))!
(go!
! (println (<! incoming-mails))!
(go!
! (>! incoming-mails {:subject “Hi!”}))

13

atoms agents STM futures promises CSP
create atom agent ref future promise chan

read deref deref deref deref ⊗ deref ⊗ <! ⊗

write reset! ref-set deliver >! ⊗

swap! ↺ send alter

block dosync ↺ go

other await ⊗

>! <!

P1 P2

Liveness issues

14

Liveness
atoms agents STM futures

promises CSP

atoms ✔ ✔ ✔ ✔ ✘

agents ✔ ✔ ✔ ✘ ✘

STM ✔ ✔ ✔ ✔ ✘

futures
promises ✔ ✘ ✔ ✘ ✘

CSP ✔ ✘ ✔ ✔ ✘

used
in

(def mails (ref ‘()))!
(def incoming-mails (chan))!
(dosync!
 (ref-set mails!
 (cons (<!! incoming-mails) @mails))

(def p (promise))  
(def ag (agent 0))

Thread 1: Thread 2:
(deref p)!! ! (deliver p 2)!

!
(send ag! ! ! ! ! (send ag!
 (fn [_] (deref p))! (fn [_] (deliver p 2)))

✔

✘

Inner model blocks!
Outer model doesn’t expect this}⇒ possible deadlock

Study Clojure
Safety

atoms agents STM futures
promises CSP

atoms ✘ ✘ ✘ ✘ ✘

agents ✔ ✔ ✔ ✔ ✔

STM ✘ ✔ ✔ ✘ ✘

futures
promises ✔ ✔ ✔ ✔ ✔

CSP ✔ ✔ ✔ ✔ ✔

used
in

15

Liveness
atoms agents STM futures

promises CSP

atoms ✔ ✔ ✔ ✔ ✘

agents ✔ ✔ ✔ ✘ ✘

STM ✔ ✔ ✔ ✔ ✘

futures
promises ✔ ✘ ✔ ✘ ✘

CSP ✔ ✘ ✔ ✔ ✘

used
in

✘ proven by counter-example
✔ “proof” by argument

Unsafe when:!
Outer model re-executes!
Inner model irrevocable actions

Possible deadlock when:!
Inner model blocks!
Outer model doesn’t expect this

Solutions & ideas
1. Existing solutions!

E.g. send to agent in dosync = delayed (Clojure)

2. Extend existing solutions!

→ Delay deliver of promise in transaction

→ Disallow reading futures/promises in agent (↔ before)

3. Future research!

Building blocks

16

Future direction

17

internal thread

private mem.

async. msgs

thread

private mem.

sync. msgs

shared mem.

thread

write-once memshared mem.

Agents
& Actors

Communicating
Sequential
Processes

Software
Transactional
Memory

Atomics Futures &
Promises

thread

private mem.

sync. msgs

thread

shared mem. (STM)

async. msgs

Now:

Goal:
• safe, uniform, composition of components
• prevent unsafe combinations:

• irrevocable actions in re-executing blocks  
(e.g. sync msgs in STM transaction)

• blocking operations in blocks that guarantee  
progress (e.g. @future in agent)

Open questions & 
future work

• Proof ✔s

• Formal framework for all models?

18

Summary
STM

actors

CSP

futures

atomics

Safety
atoms agents refs fut/prom

promise
channel

satoms ✘ ✘ ✘ ✘ ✘
agents ✔ ✔ ✔ ✔ ✔

refs ✘ ✔ ✔ ✘ ✘
fut/prom ✔ ✔ ✔ ✔ ✔
channel

s
✔ ✔ ✔ ✔ ✔

Liveness
atoms agents refs fut/prom channel

satoms ✔ ✔ ✔ ✔ ✘
agents ✔ ✔ ✔ ✘ ✘

refs ✔ ✔ ✔ ✔ ✘
fut/prom ✔ ✘ ✔ ✘ ✘
channel

s
✔ ✘ ✔ ✔ ✘

thread

private mem.

sync. msgs

thread

shared mem. (STM)

async. msgs

