
Transactional Tasks
Parallelism in Software Transactions

Janwillem Swalens, Joeri De Koster, Wolfgang De Meuter

Futures for parallelism
(fork e) returns f
(join f) returns result of e

2

(defn fib [n]
 (if (< n 2)
 n
 (let [a (fib (- n 1))
 b (fib (- n 2))]
 (+ a b))))

Futures for parallelism

3

(defn fib [n]
 (if (< n 2)
 n
 (let [a (fork (fib (- n 1)))
 b (fork (fib (- n 2)))]
 (+ (join a) (join b)))))

(fork e) returns f
(join f) returns result of e

Transactions for
shared memory

(ref v)
(atomic e)
(deref r)
(ref-set r v)

4

(def checking (ref 100))
(def savings (ref 500))
(fork
 (atomic
 (ref-set checking (- (deref checking) 10))
 (ref-set savings (+ (deref savings) 10))))
(fork
 (atomic
 (println “You own €” (+ (deref checking)
 (deref savings)))))

serializability

Nesting futures &
transactions

5

(fork
 (fork
 …))
Nested task parallelism

(fork
 (atomic
 …))
Transactions

(atomic
 (fork
 …))
In-transaction parallelism

(atomic
 (atomic
 …))
Nested transactions (open/closed)

?

Example: Labyrinth

6

2s2d

1s

4d

1d

3s

3d 4s

2 2s2d

1s 1 1

14d

1

4 1d

3s

3d

4 4

4s3 3

4 4

Example: Labyrinth

7

2s2d

1s

4d

1d

3s

3d 4s

(for [[src dst] input-pairs]
 (let [local-grid (copy grid)]
 (expand src dst local-grid)
 (add-path grid
 (traceback local-grid dst))))

(defn expand-point [pt grid]
 (atomic
 (let [neighbors …]
 (for [n neighbors]
 (ref-set n …))
 neighbors)))

(defn expand [src dst grid]
 (loop [q (list src)]
 (if (empty? q)
 false ; no path found  
 (if (= (first q) dst)
 true ; dst reached
 (recur
 (concat
 (rest q)
 (expand-point (first q) grid)))))))

breadth-first search

s

d

Example: Labyrinth

8

2s2d

1s

4d

1d

3s

3d 4s

(for [[src dst] input-pairs]
 (let [local-grid (copy grid)]
 (expand src dst local-grid)
 (add-path grid
 (traceback local-grid dst))))

(defn expand-point [pt grid]
 (atomic
 (let [neighbors …]
 (for [n neighbors]
 (ref-set n …))
 neighbors)))

(defn expand [src dst grid]
 (loop [q (list src)]
 (if (empty? q)
 false ; no path found  
 (if (= (first q) dst)
 true ; dst reached
 (recur
 (concat
 (rest q)
 (expand-point (first q) grid)))))))

breadth-first search

2

2

22

3

3

3

s

d

1

1

Example: Labyrinth

9

2s2d

1s

4d

1d

3s

3d 4s

2 3 4

s 1 2 3

5

2 1 2 3 4 5

3 3 4 d

4 4 5

5 5

2s2d

1s 1 1

14d

1

1d

3s

3d 4s

(for [[src dst] input-pairs]
 (let [local-grid (copy grid)]
 (expand src dst local-grid)
 (add-path grid
 (traceback local-grid dst))))

(defn expand-point [pt grid]
 (atomic
 (let [neighbors …]
 (for [n neighbors]
 (ref-set n …))
 neighbors)))

(defn expand [src dst grid]
 (loop [q (list src)]
 (if (empty? q)
 false ; no path found  
 (if (= (first q) dst)
 true ; dst reached
 (recur
 (concat
 (rest q)
 (expand-point (first q) grid)))))))

breadth-first search

2

2

22

3

3

3

s

d

1

1

Example: Labyrinth

10

2s2d

1s

4d

1d

3s

3d 4s

2 3 4

s 1 2 3

5

2 1 2 3 4 5

3 3 4 d

4 4 5

5 5

2s2d

1s 1 1

14d

1

1d

3s

3d 4s

(for [[src dst] input-pairs] (defn expand-point [pt grid]
 (atomic
 (let [neighbors …]
 (for [n neighbors]
 (ref-set n …))
 neighbors)))

(defn expand [src dst grid]
 (loop [q (list src)]
 (if (empty? q)
 false ; no path found  
 (if (= (first q) dst)
 true ; dst reached
 (recur
 (concat
 (rest q)
 (expand-point (first q) grid)))))))

breadth-first search

2

2

22

3

3

3

s

d

1

1

(let [local-grid (copy grid)]
 (expand src dst local-grid)
 (add-path grid
 (traceback local-grid dst))))

 (fork
 (atomic

))

Example: Labyrinth

11

2s2d

1s

4d

1d

3s

3d 4s

2 3 4

s 1 2 3

5

2 1 2 3 4 5

3 3 4 d

4 4 5

5 5

2s2d

1s 1 1

14d

1

1d

3s

3d 4s

(for [[src dst] input-pairs]
 (fork
 (atomic
 (let [local-grid (copy grid)]
 (expand src dst local-grid)
 (add-path grid
 (traceback local-grid dst))))))

(defn expand-point [pt grid]
 (atomic
 (let [neighbors …]
 (for [n neighbors]
 (ref-set n …))
 neighbors)))

(defn expand [src dst grid]
 (loop [q (list src)]
 (if (empty? q)
 false ; no path found  
 (if (= (first q) dst)
 true ; dst reached
 (recur
 (concat
 (rest q)
 (expand-point (first q) grid)))))))

breadth-first search

2s2d

1s 1 1

1

1

1d

3s

3d

4d

4s

4 4

4

4

4✘

2

2

22

3

3

3

s

d

1

1

Example: Labyrinth

12

2s2d

1s

4d

1d

3s

3d 4s

2 3 4

s 1 2 3

5

2 1 2 3 4 5

3 3 4 d

4 4 5

5 5

2s2d

1s 1 1

1

1

1d

3s

3d

4d

4s

4 4

4

4

4✘

(for [[src dst] input-pairs]
 (fork
 (atomic
 (let [local-grid (copy grid)]
 (expand src dst local-grid)
 (add-path grid
 (traceback local-grid dst))))))

(defn expand-point [pt grid]
 (atomic
 (let [neighbors …]
 (for [n neighbors]
 (ref-set n …))
 neighbors)))

(defn expand [src dst grid]
 (loop [q (list src)]
 (if (empty? q)
 false ; no path found  
 (if (= (first q) dst)
 true ; dst reached
 (recur
 (concat
 (rest q)
 (expand-point (first q) grid)))))))

breadth-first search

2s2d

1s 1 11

3s

3d 4s

14d

4 1d

4 44 4

2

2

22

3

3

3

s

d

1

1

Labyrinth has  
limited speed-up

13
1 2 4 8 16 32 64

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

su
re

d
sp

ee
d-

up

Measured speed-up on an 8-core machine
Limited speed-up:
• conflicts
• long transactions

Parallel search in Labyrinth

Does not work! 14

(defn expand [src dst grid]
 (loop [q #{src}]
 (if (empty? q)
 false ; no path found
 (if (contains? q dst)
 true ; dst reached
 (recur
 (expand-step q grid))))))

(defn expand-step [q grid]
 (reduce union #{}
 (pmap
 (fn [p] (expand-point p grid))
 q)))

s 1

1

d

s 1

2 1 2

d

2

s 1

2 1 2

d

2

s 1

2 1 2 3

3 d

2

s 1

2 1 2

3 d

2 3

s 1

2 1 2 3

3 3 d

2 3 4

s 1 4

2 1 2 3

3 3 d

2 3

s 1 4

2 1 2 3 4

3 3 4 d

2 3

s 1

2 1 2 3

3 3 d

4

2 3 4

s 1 4

2 1 2 3 4

3 3 4 d

4 4

2 3

s 1

2 1 2 3

3 3 4 d

4

2 3

s 1

2 1 2

d

s 1 2

1 2

d

2

(for [[src dst] input-pairs]
 (fork
 (atomic
 (let [local-grid (copy grid)]
 (expand src dst local-grid)
 (add-path grid
 (traceback local-grid dst))))))

expand
in parallel

parallel breadth-first search
✘

Problems when creating
threads in a transaction

• Threads in transaction do not 
share context (Clojure, ScalaSTM)  
⇒ no access to transactional state 
⇒ serializability violated

• Threads in transaction  
prohibited (Haskell) 
⇒ parallelism limited

15

atomically $
 do { forkIO … }

(atomic
 (fork
 (ref-set …)))

✘

✘

✗

(atomic
 (fork
 (atomic
 (ref-set …))))✘

or

Transactional Tasks
Parallelism in transaction
⇒ Transactional task = thread created in transaction

Task can access transactional variables
⇒ Task adopts encapsulating transactional context

Isolation between tasks
⇒ Tasks work on conceptual copy

Serializability
⇒ All tasks should join before transaction commits  

On conflict, all tasks abort

16

0

0 1
1

0 1
1

2
0 1
1 2

0 1
1

0 1
2 1 2

Task = snapshot + store

17

snapshot σ: transactional state on creation
local store 𝜏: local modifications

T

x

·[h fp, s, t, F

s

, F

j

, E [fork e]i
)

tf

T

x

·[h fp, s, t, F

s

[{ f 0}, F

j

, E [fc] i ·[h fc, s :: t,?,?, F

j

, ei
with fc fresh

T

x

·[h fp, s, t, F

s

, F

j

, E [join fc]i ·[h fc, s0
, t0

, F

0
s

, F

0
j

, vi
)

tf

T

x

·[h fp, s, t :: t0
, F

s

, F

j

[F

0
j

[{ fc}, E [v] i ·[h fc, s0
, t0

, F

0
s

, F

0
j

, vi
if fc /2 F

j

and F

0
s

✓ F

0
j

1

Each transactional task contains:

(atomic
 (ref-set … 1)

0

0 1
1

0 1
1

2
0 1
1 2

0 1
1

0 1
2 1 2

fork creates isolated task

18

snapshot σ: transactional state on creation
local store 𝜏: local modifications

T

x

·[h fp, s, t, F

s

, F

j

, E [fork e]i
)

tf

T

x

·[h fp, s, t, F

s

[{ f 0}, F

j

, E [fc] i ·[h fc, s :: t,?,?, F

j

, ei
with fc fresh

T

x

·[h fp, s, t, F

s

, F

j

, E [join fc]i ·[h fc, s0
, t0

, F

0
s

, F

0
j

, vi
)

tf

T

x

·[h fp, s, t :: t0
, F

s

, F

j

[F

0
j

[{ fc}, E [v] i ·[h fc, s0
, t0

, F

0
s

, F

0
j

, vi
if fc /2 F

j

and F

0
s

✓ F

0
j

1

Each transactional task contains:

(atomic
 (ref-set … 1)
 (fork
 (ref-set … 2))
 (ref-set … 2)

0

0 1
1

0 1
1

2
0 1
1 2

2
0 1

2 1 2

0 1
1

0 1
2 1 2

join merges changes

19

merge local store 𝜏’ of child into parent

Conflict resolution function:
(ref 0 resolve)

resolve :: T × T × T → T
(defn resolve [o p c] c)
(defn resolve [o p c] p)
(defn resolve [o p c] (min p c))
(defn resolve [o p c] (+ p c))
(defn resolve [o p c] (error "merge conflict"))

T

x

·[h fp, s, t, F

s

, F

j

, E [fork e]i
)

tf

T

x

·[h fp, s, t, F

s

[{ f 0}, F

j

, E [fc] i ·[h fc, s :: t,?,?, F

j

, ei
with fc fresh

T

x

·[h fp, s, t, F

s

, F

j

, E [join fc]i ·[h fc, s0
, t0

, F

0
s

, F

0
j

, vi
)

tf

T

x

·[h fp, s, t :: t0
, F

s

, F

j

[F

0
j

[{ fc}, E [v] i ·[h fc, s0
, t0

, F

0
s

, F

0
j

, vi
if fc /2 F

j

and F

0
s

✓ F

0
j

1

(atomic
 …
 (join child))

Properties of
transactional tasks

• In-transaction parallelism possible

• Serializability of transactions

• Coordination of tasks: all or none

• In-transaction determinacy

20

Evaluation: Labyrinth

21
1 2 4 8 16 32 64

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

su
re

d
sp

ee
d-

up

Measured speed-up on an 8-core machine

Evaluation: Labyrinth

22
1 2 4 8 16 32 64

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

su
re

d
sp

ee
d-

up

Measured speed-up on an 8-core machine

Sequential search
Parallel search, 1 partition
Parallel search, 2 partitions
Parallel search, 4 partitions
Parallel search, 8 partitions
Parallel search, 16 partitions

• Chance of conflicts ↘︎
• Cost of conflict ↘︎

Evaluation: Bayes

23
1 2 4 8 16 32 64 128

0

1

2

3

4

5
M

ea
su

re
d

sp
ee

d-
up

Measured speed-up on an 8-core machine

Original version

(atomic
 …
 (for [from-id (range (:n-var adtree))]

 (compute-local-log-likelihood …)))

J. Swalens, J. De Koster, and W. De Meuter 23:21

the work queue in parallel: they insert the dependency into the network, and then calculate
which dependencies (if any) could be inserted next, appending the best candidate to the
work queue. The best candidate dependency is the one that maximizes a score function that
calculates the capability of the network to estimate the input data. This is encapsulated in a
transaction to prevent two dependencies from being added to the same variable simultaneously.
Dependencies are inserted until the work queue is empty. As more dependencies are discovered,
connected subgraphs of dependent variables form in the network.

Before the algorithm starts, the application generates the input data. Then, the t worker
threads process the work queue in parallel. Figure 10 indicates that a typical execution
spends 11.8% of its total time generating the input data, 88.1% learning the dependencies,
and 0.1% validating the solution. We focus on the middle part only. In that part, 93.2%
of the execution time is spent in the transaction that determines the best next dependency.
The transaction contains a loop that calculates the score for each candidate and then selects
the maximum. Each of the iterations of this loop is independent, and can therefore run in
parallel using transactional tasks.

Figure 10 Proportion of time
spent in di�erent parts of the Bayes
application (with v = 48).

Figure 11 Measured speed-up of the learning phase for the
Bayes application, as the number of threads increases. The
blue line shows the original version. The red line shows the
version with a parallel for loop, where each of the (at most) 48
iterations is executed in parallel.

In Figure 11, we measure the speed-up of the learning phase as the number of worker
threads (t) increases, for a network of 48 variables. The blue line is the original version: t

threads process dependencies in parallel. The red line shows the version in which the loop is
executed in parallel. Here, in each transaction, up to v transactional tasks run in parallel,
where v is the number of Bayesian variables in the network (48 in our experiment). Therefore,
the maximal ideal speed-up in the original version is t, while in the version with the parallel
loop it is t ◊ v.

The speed-up of the original version (blue line) increases as number of threads increases,
up to a speed-up of 2.75 for 16 threads. After this point, the speed-up plateaus. By examining
the execution of the program, we find that even though a larger number of worker threads
are created, only a limited number of them actually perform any work. The others are idle
as not enough work is available after a certain point in the execution of the program.

CVIT 2016

Not enough work
⇒ speed-up levels off

Evaluation: Bayes

24

(atomic
 …
 (for [from-id (range (:n-var adtree))]
 (fork
 (compute-local-log-likelihood …))))

J. Swalens, J. De Koster, and W. De Meuter 23:21

the work queue in parallel: they insert the dependency into the network, and then calculate
which dependencies (if any) could be inserted next, appending the best candidate to the
work queue. The best candidate dependency is the one that maximizes a score function that
calculates the capability of the network to estimate the input data. This is encapsulated in a
transaction to prevent two dependencies from being added to the same variable simultaneously.
Dependencies are inserted until the work queue is empty. As more dependencies are discovered,
connected subgraphs of dependent variables form in the network.

Before the algorithm starts, the application generates the input data. Then, the t worker
threads process the work queue in parallel. Figure 10 indicates that a typical execution
spends 11.8% of its total time generating the input data, 88.1% learning the dependencies,
and 0.1% validating the solution. We focus on the middle part only. In that part, 93.2%
of the execution time is spent in the transaction that determines the best next dependency.
The transaction contains a loop that calculates the score for each candidate and then selects
the maximum. Each of the iterations of this loop is independent, and can therefore run in
parallel using transactional tasks.

Figure 10 Proportion of time
spent in di�erent parts of the Bayes
application (with v = 48).

Figure 11 Measured speed-up of the learning phase for the
Bayes application, as the number of threads increases. The
blue line shows the original version. The red line shows the
version with a parallel for loop, where each of the (at most) 48
iterations is executed in parallel.

In Figure 11, we measure the speed-up of the learning phase as the number of worker
threads (t) increases, for a network of 48 variables. The blue line is the original version: t

threads process dependencies in parallel. The red line shows the version in which the loop is
executed in parallel. Here, in each transaction, up to v transactional tasks run in parallel,
where v is the number of Bayesian variables in the network (48 in our experiment). Therefore,
the maximal ideal speed-up in the original version is t, while in the version with the parallel
loop it is t ◊ v.

The speed-up of the original version (blue line) increases as number of threads increases,
up to a speed-up of 2.75 for 16 threads. After this point, the speed-up plateaus. By examining
the execution of the program, we find that even though a larger number of worker threads
are created, only a limited number of them actually perform any work. The others are idle
as not enough work is available after a certain point in the execution of the program.

CVIT 2016

1 2 4 8 16 32 64 128
0

1

2

3

4

5
M

ea
su

re
d

sp
ee

d-
up

Measured speed-up on an 8-core machine

Original version
Parallel loop (48 tasks
per worker thread)

Not enough work
⇒ speed-up levels off

Finer-grained parallelism

Insights from experiments

• Labyrinth: parallelize search algorithm 
⇒ fewer & cheaper conflicts

• Bayes: more fine-grained parallelism  
⇒ better exploit hardware

• Low developer effort (re-use existing concepts)

• Suitable for applications with long transactions

25

Implementation

Fork of Clojure

https://github.com/jswalens/transactional-futures/

http://soft.vub.ac.be/~jswalens/ecoop-2016-artifact/

Details in paper

26

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *
Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

https://github.com/jswalens/transactional-futures/
http://soft.vub.ac.be/~jswalens/ecoop-2016-artifact/

Summary
Parallelism in a transaction is useful 
for programs with long transactions
But currently:
↗ not allowed (Haskell)
↘︎ not serializable (Clojure, Scala)

Idea: transactional tasks
• safe access to encapsulating transaction
• serializable, coordinated, determinate

Benefits:
• finer-grained parallelism speed-up
• low developer effort

27

⇒

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

2.0

2.5

M
ea

su
re

d
sp

ee
d-

up

Measured speed-up on an 8-core machine

Sequential search
Parallel search, 1 partition
Parallel search, 2 partitions
Parallel search, 4 partitions
Parallel search, 8 partitions
Parallel search, 16 partitions

✗

Transactional Tasks vs.
Nested Parallel Transactions

Guarantees in transaction
• NPT: (atomic (fork …)) → race conditions possible
• NPT: (atomic (fork (atomic …))) → serializable, last

writer wins (not deterministic)
• TT: conflict resolution→ in-transaction determinacy (but

may need to define resolution function)

Performance
• NPT: roll back and retry subtransaction
• TT: resolve conflict
→ different performance characteristics depending on
application (chance of conflicts between threads in tx)

More fine-tuned conflict resolution (e.g. minimum for Labyrinth) 29

STAMP

30

J. Swalens, J. De Koster, and W. De Meuter 23:7

Table 1 Characterization of the STAMP
applications, abridged from [21]. These
numbers were gathered on a simulated 16-
core system. The transaction length and
transactional execution time are color-coded
high , medium G#, low #.

Application Instructions Time
/tx (mean) in tx

labyrinth 219,571 100%
bayes 60,584 83%
yada 9,795 100%
vacation-high 3,223 G# 86%
genome 1,717 G# 97%
intruder 330 # 33% G#
kmeans-high 117 # 7% #
ssca2 50 # 17% #

from the source point (line 12), recording the distance back to the source in each visited
cell of the local-grid using ref-set (Figure 3b), until the destination point is reached.
Afterwards, the traceback function finds a path from the destination back to the source,
minimizing the number of bends (line 14; Figure 3c). Finally, the shared grid is updated to
indicate these cells are now occupied (line 15; Figure 3d). After the transaction has finished,
this process is repeated until all work has been processed.4

Listing 1 Transactional version of Lee’s algorithm in Clojure.
1 (def grid (initialize-grid w h)) ; w ◊ h array of cells, each cell is a ref

2 (def work-queue (ref (parse-input))) ; list of source–destination pairs

3

4 (loop [] ;

4

5 (let [work (pop work-queue)] ; atomically take element from work queue

6 (if (nil? work)
7 true ; done

8 (do
9 (atomic

10 (let [local-grid (copy grid)
11 [src dst] work ; destructure source–destination pair using pattern matching

12 reachable? (expand src dst local-grid)] ; ref-sets on local-grid
13 (if reachable?
14 (let [path (traceback local-grid dst)]
15 (add-path grid path))))) ; ref-sets on grid
16 (recur)))))

To parallelize this algorithm, several “worker threads” execute the loop simultaneously.
Each thread repeatedly takes a source–destination pair from the work queue and attempts to
find a connecting path in a transaction. If two threads result in overlapping paths, a conflict
occurs when updating the global grid (line 15), as the two threads attempt to write to the
same transactional variable (that represents the cell where the paths collide). As a result,
one of the two transactions is rolled back and will look for an alternative path.

Minh et al. [21] measure various metrics of the applications in the STAMP benchmark,
shown in Table 1. We compare the Labyrinth application with the other applications. Firstly
we see that this application spends 100% of its execution time in transactions. Hence, the
amount of parallelism in this program is maximally the number of transactions that are
created, which is the number of input source–destination pairs, even on a machine with more
cores. To allow more fine-grained parallelism to be exploited in this program, it is necessary
to allow parallelism inside the transactions. Secondly, we infer that the transactions in this
application take a long time to execute: an average transaction of the Labyrinth application
contains several orders of magnitude more instructions than the other applications in the
STAMP benchmark. This means conflicts will be costly: retrying a transaction incurs a large
penalty. Parallelizing the transactions will reduce this cost.

4 Clojure’s loop (loop [x 0] (recur 1)) defines and calls an anonymous function, in which recur
executes a recursive call. It is equivalent to Scheme’s named let: (let n ([x 0]) (n 1)).

CVIT 2016

Coarse-grained parallelism 
between parts of the application

Transactions
• Conflicts span multiple

variables

• Difficult to define conflict
resolution functions

• Chance of conflicts depends
on application

⇒ resolve high-level conflicts
using serializability

31

Fine-grained parallelism 
within a part of the application

Transactional tasks
• Conflict affects single variable 

• Define conflict resolution
function based on algorithm

• Conflicts likely, so rollback bad
for performance

⇒ resolve low-level conflicts
using conflict resolution
functions

Implementation details

32

J. Swalens, J. De Koster, and W. De Meuter 23:17

sets of the child is copied from the child’s to the parent’s values, calling the resolution
function on conflicts. The child’s sets, commutes, ensures, and joined are appended to
the parent’s. Additionally, the child is added to its parent’s joined. Lastly the child’s final
value is returned. On subsequent joins of the same child, only the final value is returned.

The transaction also contains a ‘stop’ flag. If one of the tasks encounters a conflict during
its execution, it sets the transaction’s stop flag and stops. The transactional operations
(doGet, doSet, join...) contain a check point: they check the stop flag when they are called
and abort their task if it is set. Consequently, when a task encounters a conflict and sets the
stop flag, all other tasks in the same transaction will stop once they reach their next check
point, and once all tasks have stopped the transaction is restarted.

When a transaction commits, at the end of Transaction.runInTx(fn), it first checks
whether the root task has joined all of its children: if it has we know all tasks have been
joined (as explained in Section 5.2), otherwise an exception is thrown. Next, each modified
ref is locked and the changes are committed. This may abort other transactions: by setting
the stop flag of the other transaction, eventually all its tasks will stop and the conflicting
transaction restarts.

6.1 Implementation of Snapshot and Local Store
Even though our implementation is a prototype, we briefly describe how the snapshot and
values are stored, the most frequently used data structures in a transactional task. Even
though the snapshot and values of a task are copied from its parent when it is created, we
do not actually store duplicates.

Figure 7a lists a program that creates three tasks that each modify some refs. In Figure 7b
we illustrate how the data structures are stored in memory after the third statement. We
write si and vi for the snapshots and values of task i. Each data structure comprises a linked
list of hash maps. We exploit the fact that snapshots are immutable to share some of these
hash maps between the data structures.

In the code example, task 1 (the root task) first sets A. A second task is forked and sets B.
Consequently, after this step, s1 is empty, v1 and s2 both contain A, and v2 consists of A and
B. Figure 7b illustrates how this is stored in memory. The snapshots are shared between the
two tasks: these are immutable structures only used for look-up. The values of both tasks,
v1 and v2, consist of a linked list that first contains a hash map that stores their private
changes and next contains the shared snapshots. When ref B is updated in the second task,
it is updated in the first hash map pointed to by v2. When a ref is read in the second task,
we iterate over the linked list pointed to by v2, up the tree, until the ref is found.

Figure 7 In the code example (a) three tasks are created. Each task contains a snapshot, which
is immutable through the task’s lifetime, and values, to which updated values for refs are written.
(b) and (c) illustrate how the data structures are stored in memory.

(a) Code example.

(atomic
1(ref-set gray A)
2(fork 3(ref-set blue B)

4(fork 5(ref-set green C))
6(ref-set red D)
...)

7(ref-set purple E)
...)

(b) Data after step 3.

A

B

s₂

v₂

s₁

v₁

(c) Data after step 7.

A

E B

D E

s₂

v₂

s₃

v₃

s₁

v₁

CVIT 2016

C

