Transactional Futures
Parallelism in Software Transactions

Janwillem Swalens

8 a
INg SO[Lware
'0% Languages.Lab m

RIJE
NIVERSITEIT
RUSSEL

o C L

Calculations per second per constant dollar

Context: concurrency

Moore’s law o

MECHANICAL RELAY VATCJ’BUEM TRANSISTOR INTEGRATED CIRCUIT
7,
&"09 . MWID‘.AWMX
X
(J
7 [ee)
€05 K
IBM BLUE GENE
7¢,
*05 POVER ®
; 3
’000 ° ¢
1BM ASCI
° WHITE
70 CRAY 1 ma.. PENTAMPC
OATAGENERAL o APPLE
NOA o SUNT MACINTOSH
0, ° ® o°
) oo ®
0 WHIRLW"*J' . o
'00[ENIAC o 18M 360
o ‘ P
7 o 8° " oo
&05 cowossus @ e o0
o
’& 1BM TABULATOR '
0> TABULATOR ° o
el
e %6 QEQL"\:ECM. L J

7900 7905 910 7915 7929 1925 7939 7935 1999 7945 950 955 "%y %65 7929 7925 1989 "985 1999 995 2009 2005 2010 2015 202,

Year Source: Ray Kurzweil, DFJ

Concurrency is useful but difficult

Concurrency models provide
safety guarantees

Three concurrency models

» Futures: deterministic
- Transactions: non-deterministic, shared memory

» Actors: non-deterministic, message passing

Separately they work fine,
but combining them leads to problems.

Three concurrency models

« Futures: deterministic

» Transactions: non-deterministic, shared memory

Separately they work fine,
but combining them leads to problems.

Futures for parallelism

(fork e) returns £
(join f£) returnsresultof e

(defn fib [n]
(if (< n 2)
n
(let [a (fib (- n 1))
b (fib (- n 2))]
(+ a b))))

Futures for parallelism

(fork e) returns £
(join f£) returnsresultof e

(defn fib [n]
(if (< n 2)
n
(let [a (fork (fib (- n 1)))
b (fork (fib (- n 2)))]
(+ (jJoin a) (Jjoin b)))))

Transactions for
shared memory

(ref v) serializability

(atomic e)
(deref r)
(ref-set r v)

(def checking (ref 100))

(def savings (ref 500))
(fork
(atomic
(ref-set checking (- (deref checking) 10))
(ref-set savings (+ (deref savings) 10))))
(fork
(atomic

(println “You own €” (+ (deref checking)
(deref savings)))))

Nesting futures &
transactions

(fork (fork
(fork X (atomic §
-)) 1)) :

Nested task parallelism Transactions
(atomic %& (atomic
(fork h (atomic
)) &)) S

In-transaction parallelism Nested transactions (open/closed)

-

4s

Example: Labyrinth

2d

2

1s | 1

ﬁ

3S

3|3 |3d

4s

Example: Labyrinth

2d 2S
1s S
44

1d d

3s

3d 4s

(for [[src dst] input-pairs]
(let [local-grid (copy grid)]
(expand src dst local-grid)

/(defn expand-point [pt grid]
(atomic
(let [neighbors ...]
(for [n neighbors]
(ref-set n ..))
neighbors)))

(tracebacleodal—i*ﬁd dst))))

(de é/axpnd [src dst

(loo§
70y <

(expand- p01nt (érst q)

Example: Labyrinth

2d 2s 2
1s s|{1[2]3
4d 211123
1d d
3s
3d 4s

(for [[src dst] input-pairs]
(let [local-grid (copy grid)]
(expand src dst local-grid)

/(defn expand-point [pt grid]
| (atomic
(let [neighbors ...]
(for [n neighbors]
(ref-set n ..))
neighbors)))

(de é/axpnd [src dst

(loo§
70y <

4 11
(expand- p01nt (érst q)

Example: Labyrinth

od| |o2s 2| 3 AEIE 2d
1s s|1]2]3 15| 1 | 1
4d ol1]2]3 ol1]2]3 5
1d d 3 3|4 1d
| 35 4 4|5
3d 4s 5 5 4s

(for [[src dst] input-pairs]
(let [local-grid (copy grid)]
(expand src dst local-grid)

/(defn expand-point [pt grid]
| (atomic
(let [neighbors ...]
(for [n neighbors]
(ref-set n ..))
neighbors)))

(de é/axpnd [src dst

(loo§
70y <

4 12
(expand- p01nt (érst q)

Example: Labyrinth

od| |o2s 2| 3 AEIE 2d
1s s|1]2]3 15| 1 | 1
4d ol1]2]3 ol1]2]3 5
1d d 3 3|4 1d
| 35 4 4|5
3d 4s 5 5 4s

(for [[src dst] input-pairs]
(¥erk[local-grid (copy grid)]
(akpmnd src dst local-grid)
(add-path grid
(traceback local-grid dst))))

/(defn expand-point [pt grid]
| (atomic
(let [neighbors ...]
(for [n neighbors]
(ref-set n ..))
neighbors)))

(deé’axpand [src dst
(loo§
(iféﬁxf ? g
false 6\
f. 0k %,

% (rest q C 13

(expand—péint (f€rst q)

Example: Labyrinth

(expand—péint (f€rst q)

2d 2s 2|3 2131415
1s 11213 1s
4d 2|3 211123 3)
1d d 3 3|4
3 4 4 15 3s 4
3d 4s 3) 5 3d 4s
(for [[src dst] input-pairs] l;(aefn eéﬁand—point [pt grid]
(fork | (atomic
(atomic | _ (let [neighbors ..]

(let [local-grid (copy grid)] (for [n neighbors]
(expand src dst local-grid) (ref-set n ..))
(add-path grid i neighbors)))

(traceback local,-grid dst)))))){
/bxpand [src dst ‘
(loo§
(iféﬁxf ? g
% false 6\6
SIREIRSIR true /3‘{ |
AR
% (rest g C 14

Example: Labyrinth

od| |o2s 2| 3 AEIE 2d
1s s|1]|2]|3 1s| 1 [1
4d ol1]2]3 ol1]2]3 5 4d
1d d 3 3|4 4| |4d
| 35 4 4|5 SN Py
3d 4s 5 5 3d 4s

(for [[src dst] input-pairs]
(fork
(atomic
(let [local-grid (copy grid)]
(expand src dst local-grid)
(add-path grid j
(traceback local-~grid dst)))))){
(de /axpand [src dst ‘

(loo§
(if§%%? ? g
ﬁ’? false 6\6/‘

% (rest q C 15

(expand—péint (f€rst q)

A(defn expand-point [pt grid]
| (atomic
(let [neighbors ...]
(for [n neighbors]
(ref-set n ..))
neighbors)))

Labyrinth has
limited speed-up

Measured speed-up on an 8-core machine
Limited speed-up:
. conflicts
20 - long transactions

2.5

—_i
(6)

Measured speed-up

0.5

0.0
1 2 4 8 16 32 64

Maximal number of threads (t)

Parallel search

(for [[src dst] input-pai d [sr

(fork #{src}
(atomic e (h&r
(let [logaf=grid (copy g false é;?]
(expand src dst local-g (if (contains
(add-path grid true g
(traceback local-grid dst)))))) (recur

(expand4step q

N,

2

s |1

abyrinth

21112
- expand
S Lin parallel
' 211123
2|3 3 314
s |1 4 4
112
3 d
4 ",,4
T
s 1 ;
11213 "
3 y
(defﬁ é fand—step [g grid]
(redu¢e union #{}
(pmap
(fn [p] (expand-point p grid))
q [teadth_ﬁ)
I‘StSe
arch

Does not work!)

Problems when creating
threads in a transaction

(atomic
« Threads in transaction do not (fork
t ..
share context (Clojure, ScalaSTM) (rexe)))
= No access to transactional state
or e e of e . (atomic
= serializability violated (fork

&
(set ..))))

« [hreads in transaction
prohibited Haskell
= parallelism limited

atomical
do { £

N 4

Transactional Tasks

Parallelism in transaction
= [ransactional task = thread created in transaction

Task can access transactional variables
= Task adopts encapsulating transactional context

Isolation between tasks
= Tasks work on conceptual copy

¥
[

Serializability
= All tasks should join before transaction commits
On conflict, all tasks abort

Task = snapshot + store

(atomic
(ref-set .. 1)

Fach transactional task contains:

snapshot o: transactional state on creation

T e e —

¢focal store 73

local modifications

<fp,- @ , , & fork el)
<fP' 7 T ,Fi, Elfc) 1 (fe, ,92,9,F,e)

20

fork creates isolated task

(atomic
(ref-set .. 1)
(fork
(ref-set .. 2))
(ref-set .. 2)

Fach transactional task contains:

snapshot o: transactional state on creation

S e e ——

local modifications

21

join merges changes

~

(atomic

(join child))

merge local store 7’ of child into parent

Conflict resolution function:

(ref 0 resolve)

(defn resolve [0 p ¢] (min p c))

22

Properties of
transactional tasks

» In-transaction parallelism possible

- Serializability of transactions

¥
[

. Coordination of tasks: all or none

- In-transaction determinacy

23

Evaluation: Labyrinth

Measured speed-up on an 8-core machine

2.5

2.0

-
6)]

Measured speed-up

0.5

0.0

2 4 8 16
Maximal number of threads ()

32

64

24

Evaluation: Labyrinth

. Measured speed-up on an 8-core machine

* Chance of conflicts ™\ optimumforp=s,t=2
* Cost of conflict

-
6))

Measured speed-up

b4

Sequential search

Parallel search, 1 partition
Parallel search, 2 partitions
Parallel search, 4 partitions
Parallel search, 8 partitions
Parallel search, 16 partitions

0.5

0.0
1 2 4 8 16 32 64

Maximal number of threads (¢ x p) 25

Evaluation: Bayes

Time spent
in transaction
(in learning phase)

EEE Transactional (93.2%)
7 Non-transactional (6.8%)

(atomic
(for [from-id (range (:n-var adtree))]

(compute-local-log-likelihood ..)))

Measured speed-up on an 8-core machine

4
=3
3 s
o)
% A — —— 4
o
g maximum for ¢t =16
g ° Not enough work
=
= speed-up levels off
1
—}— Original version
° 1 2 4 8 16 32 64 128

Number of worker threads (¢) 26

Evaluation: Bayes

Time spent
in transaction
(in learning phase)

EEE Transactional (93.2%)
7 Non-transactional (6.8%)

(atomic
(for [from-id (range (:n-var adtree))]

(fork
(compute-local-log-likelihood ..))))

Measured speed-up on an 8-core machine

maximum for t=5

~ Finer-grained parallelism

w\

maximum for t =16

Measured speed-up

2 Not enough work
= speed-up levels off
| —— Original version
- o 4
0
|)) : . L ! 1

Number of worker threads (¢) 2/

Insights from experiments

« Labyrinth: parallelize search algorithm
= fewer & cheaper conflicts

. Bayes: more fine-grained parallelism
= better exploit hardware

- Low developer effort (re-use existing concepts)

. Suitable for applications with long transactions

28

Implementation

Fork of Clojure

https://qgithub.com/jswalens/transactional-futures/

http://soft.vub.ac.be/~jswalens/ecoop-2016-artifact/

29

https://github.com/jswalens/transactional-futures/
http://soft.vub.ac.be/~jswalens/ecoop-2016-artifact/

Summary

Parallelism in a transaction is useful {: {:
for programs with long transactions '
But currently:

>

 not allowed (Haskell) % %
N\ not serializable (Clojure, Scala) “«
/dea: transactional tasks R \
- safe access to encapsulating transaction ' u./'
. serializable, coordinated, determinate «
Benefits: Y
» finer-grained parallelism = speed-u
g p peed-up I
- low developer effort R
More details: s

. J. Swalens et al. “Transactional Tasks: Parallelism in Software Transactions” ECOOP 2016

- https://github.com/jswalens/transactional-futures/ -

https://github.com/jswalens/transactional-futures/

Transactional Tasks vs.
Nested Parallel Transactions

Guarantees in transaction
* NPT: (atomic (fork ..)) — race conditions possible

* NPT: (atomic (fork (atomic ..))) — serializable, last
writer wins (not deterministic)

- TT: conflict resolution— in-transaction determinacy (but
may need to define resolution function)

Performance
- NPT: roll back and retry subtransaction
- TT: resolve conflict

— different performance characteristics depending on
appl ICation (chance of conflicts between threads in tx)

More fine-tuned conflict resolution (eg. minimum for Labyrinth)

32

STAMP

Application Instructions Time
/tx (mean) in tx
labyrinth 219571 @ 100% @
bayes 60,584 @ 83% @
yada 9,79 @ 100% @
vacation-high 3223 © 86% @
genome L7170 9% @
intruder 3300 33% ©
kmeans-high 117 O 7% O
ssca2 50 O 17% O

33

Coarse-grained parallelism
between parts of the application

Transactions

» Conflicts span multiple
variables

« Difficult to define conflict
resolution functions

 Chance of conflicts depends
on application

= resolve high-level conflicts
using serializability

Fine-grained parallelism
within a part of the application

Transactional tasks

» Conflict affects single variable

« Define conflict resolution
function based on algorithm

» Conflicts likely, so rollback bad
for performance

= resolve low-level conflicts
using conflict resolution
functions

34

Implementation details

(a) Code example. (b) Data after step 3. (c) Data after step 7.
(atomic <~(::) <~(::)
l(ref-set gray A)
2(fork 3(ref-set blue B) T A
4(fork °(ref-set green C))
6(ref-set red D) 6@ 6@
7(ref—s“e:.‘z purple E) 7 ’;3 ’;3
® (>) | G “(s3)

7*
Dl nin®

