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There are many concurrency models
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Two categories: 
Message passing                ↔                Shared memory
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Actors
(def airline-behavior
  (behavior [flights]
    [orig dest n]
    (let [flight   (search-flight flights orig dest)
          flight'  (reserve flight n)
          flights' (replace flights flight flight')]
      (become airline-behavior flights'))))

(def air-canada
  (spawn airline-behavior
    {"AC854" {:orig "YVR" :dest "LHR" :seats 211}
     "AC855" {:orig "LHR" :dest "YVR" :seats 211}}))

(send air-canada "LHR" "YVR" 2)
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Software Transactional Memory

(def flights
  {"AC854" {:orig "YVR" :dest "LHR" :seats (ref 211)}
   "AC855" {:orig "LHR" :dest "YVR" :seats (ref 211)}…})

(dosync
  (let [outbound (get (get flights "AC854") :seats)
        return   (get (get flights "AC855") :seats)]
    (if (and (>= @outbound 2) (>= @return 2))
      (do (ref-set outbound (- @outbound 2))
          (ref-set return   (- @return   2)))
      (println "Not enough seats available"))))
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Actors often share memory

Study of 15 Scala programs 
that use actors: 

• 12/15 (80%) combine with 
another model 

• 6/15 (40%) say they circumvent 
it where it is “not a good fit”
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data races and deadlocks possible
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Tasharofi, Dinges, and Johnson (2013). Why Do Scala Developers Mix the Actor Model with Other Concurrency Models? (ECOOP’13)



Vacation benchmark
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(def flights   [(ref {:id "AC855"
                      :price 499
                      :orig "London" :dest "Vancouver" …})
                …])
(def rooms     [(ref {:id 101 …}) …])
(def cars      [(ref {:id "ABC123" …}) …])

(def customers [(ref {:orig "London" :dest "Vancouver"
                      :start "2017-10-22" :end "2017-10-27"
                      :password nil})
                …])

(defn process-customer [c]
  (dosync
    (reserve-flight (:orig @c) (:dest @c) (:start @c))
    (reserve-flight (:dest @c) (:orig @c) (:end @c))
    (reserve-room   (:dest @c) (:start @c) (:end @c))
    (reserve-car    (:dest @c) (:start @c) (:end @c))
    (ref-set c (assoc @c :password (generate-password)))))

Based on: Minh, Chung, Kozyrakis, Olukotun (2008). STAMP: Stanford Transactional Applications for Multi-Processing (IISWC’08)



Customers are processed  
in parallel

8

(defn process-customer [c]
  (dosync
    (reserve-flight (:orig @c) (:dest @c) (:start @c))
    (reserve-flight (:dest @c) (:orig @c) (:end @c))
    (reserve-room   (:dest @c) (:start @c) (:end @c))
    (reserve-car    (:dest @c) (:start @c) (:end @c))
    (ref-set c (assoc @c :password (generate-password)))))



But more fine-grained 
parallelization is possible
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(defn process-customer [c]
  (dosync
    (send (rand workers) :flight (:orig @c) …)
    (send (rand workers) :flight (:dest @c) …)
    (send (rand workers) :room   (:dest @c) …)
    (send (rand workers) :car    (:dest @c) …)
    (ref-set c (assoc @c :password (generate-password)))))

serializability broken



Observations: 

Actors often share memory  
⇒ races & deadlocks possible 

Transactions contain subtasks that may be parallelized 
⇒ serializability broken 

Actors + Transactions = Problems
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Solution: Transactional Actors
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(dosync
  (dosync
    (ref v)
    (deref r)
    (ref-set r v)))

(behavior [] []
  (dosync
    (ref v)
    (deref r)
    (ref-set r v)))

(dosync
  (behavior [] [] …)
  (spawn beh state)
  (become beh state)
  (send actor msg))

(behavior [] []
  (behavior [] [] …)
  (spawn beh state)
  (become beh state)
  (send actor msg))
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Transactional memory in actors
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(behavior [] [c]
  (process-customer c))

(defn process-customer [c]
  (dosync
    (reserve-flight (:orig @c) (:dest @c) (:start @c))
    (reserve-flight (:dest @c) (:orig @c) (:end @c))
    (reserve-room   (:dest @c) (:start @c) (:end @c))
    (reserve-car    (:dest @c) (:start @c) (:end @c))
    (ref-set c (assoc @c :password (generate-password)))))

Similar to thread-based systems



Actors in a transaction
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(dosync

  (def airline-beh
    (behavior [flights]
      …))

  (spawn airline-beh @flights)
  (become airline-beh @c)

  (send :process-customer @c))

Difficulty: side effects in transaction

separate from transaction, 
no side-effect

delay side effect 
until commit (pessimistic)

sent immediately, but 
rolled back on abort 
(optimistic)

⤺

⤺

✓



Sending a message  
in a transaction

Message depends on the transaction 

Receiving turn is tentative: 

• Side effects (spawn, become) delayed 

• At the end, wait for dependency to commit

14

(behavior [] [msg]
  (dosync
    (send b :msg)
    …))

(behavior [] [msg]
  …)

wait here until t1 commits

1



Special case: 
Message in tentative turn

Dependency is forwarded
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(behavior [] [msg]
  (dosync
    (send b :msg)
    …))

(behavior [] [msg]
  (send c :msg)
  …)

(behavior [] [m]
  …)

wait here until t1 commits wait here until t1 commits

1

1



Special case: 
Transaction in tentative turn

Transaction in tentative turn waits before it commits 

⇒ serializability maintained 
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(behavior [] [msg]
  (dosync
    (send b :msg)
    …))

(behavior [] [msg]
  (dosync
    …)
  …)

no need to wait

wait here until t1 commits

1



Properties

Serializability 

side effects on actors part of transaction 

but: other side effects not allowed in tentative turns 

Free from deadlocks 

dependencies always from new to old 

but: transactions cannot cross turns 

Free from low-level races 

granularity of turns & transactions 
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Implementation

Fork of Clojure 

• STM built-in 

• Regular actors added 

• Transactional Actors as modifications of STM & actors 

Details in paper 

https://github.com/jswalens/transactional-actors
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https://github.com/jswalens/transactional-actors


Evaluation: Vacation benchmark

Speed-up limited: 2.6  
because of conflicts
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Transactional Actors

Better speed-up due to: 
• finer-grained parallelism 
• fewer/cheaper conflicts 

For 1 thread: much slower



Limitations & Future Work

• Implement optimizations 

• Evaluate: 

• More benchmark applications (suggestions?) 

• Comparison with related work (performance & software 
quality atttributes) 

• Formalize of semantics and properties
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Summary
Problem: 
Shared memory & message passing 
often combined, but breaks properties 

Solution: 
Transactional Actors 
• Messages have a dependency 
• Transaction aborts 
⇒ all its effects are rolled back 

Benefits: 
• serializable, deadlock free, race free 
• finer-grained parallelism 
⇒ higher speed-up
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Message in transaction  
in tentative turn
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(behavior [] [msg]
  (dosync
    (send b :msg)
    …))

(behavior [] [msg]
  (dosync
    (send c :msg))
  …)

1

(behavior [] [m]
  …)

no need to wait

wait here until
t1 commits wait here until t2 commits

2


