
Transactional Actors  
Communication in Transactions

Janwillem Swalens
Joeri De Koster

Wolfgang De Meuter

There are many concurrency models

2

Two categories:
Message passing ↔ Shared memory

fu
tu

re
s

promises

Fork/Join

Nested Data Parallelism

da
ta

flo
w

th
re

ad
s

locks

Software Transactional Memory

Concurrent Revisions

actors

Communicating
Sequential Processes

active objects

M
ap

Re
du

ce

speculative parallelism

transactional events

w
or

ld
s

OpenMP

M
PI

Actors
(def airline-behavior
 (behavior [flights]
 [orig dest n]
 (let [flight (search-flight flights orig dest)
 flight' (reserve flight n)
 flights' (replace flights flight flight')]
 (become airline-behavior flights'))))

(def air-canada
 (spawn airline-behavior
 {"AC854" {:orig "YVR" :dest "LHR" :seats 211}
 "AC855" {:orig "LHR" :dest "YVR" :seats 211}}))

(send air-canada "LHR" "YVR" 2)

3

behavior

state

Actors
(def airline-behavior
 (behavior [flights]
 [orig dest n]
 (let [flight (search-flight flights orig dest)
 flight' (reserve flight n)
 flights' (replace flights flight flight')]
 (become airline-behavior flights'))))

(def air-canada
 (spawn airline-behavior
 {"AC854" {:orig "YVR" :dest "LHR" :seats 211}
 "AC855" {:orig "LHR" :dest "YVR" :seats 211}}))

(send air-canada "LHR" "YVR" 2)

4

no low-level data races
no deadlocks

turn

behavior

state

Software Transactional Memory

(def flights
 {"AC854" {:orig "YVR" :dest "LHR" :seats (ref 211)}
 "AC855" {:orig "LHR" :dest "YVR" :seats (ref 211)}…})

(dosync
 (let [outbound (get (get flights "AC854") :seats)
 return (get (get flights "AC855") :seats)]
 (if (and (>= @outbound 2) (>= @return 2))
 (do (ref-set outbound (- @outbound 2))
 (ref-set return (- @return 2)))
 (println "Not enough seats available"))))

5

serializability

trans-
action

Actors often share memory

Study of 15 Scala programs 
that use actors:

• 12/15 (80%) combine with
another model

• 6/15 (40%) say they circumvent
it where it is “not a good fit”

6

Actors

ThreadsFutures
BigBlueButton

BlueEyes

CIMTool
Diffa

ENSIME

Evactor Gatling

GeoTrellis
Kevoree
ScalatronSignalCollect

Socko
Spark
Spray

ThingML

data races and deadlocks possible

Actors

ThreadsFutures
BigBlueButton

BlueEyes

CIMTool
Diffa

ENSIME

Evactor Gatling

GeoTrellis
Kevoree
ScalatronSignalCollect

Socko
Spark
Spray

ThingML

Tasharofi, Dinges, and Johnson (2013). Why Do Scala Developers Mix the Actor Model with Other Concurrency Models? (ECOOP’13)

Vacation benchmark

7

(def flights [(ref {:id "AC855"
 :price 499
 :orig "London" :dest "Vancouver" …})
 …])
(def rooms [(ref {:id 101 …}) …])
(def cars [(ref {:id "ABC123" …}) …])

(def customers [(ref {:orig "London" :dest "Vancouver"
 :start "2017-10-22" :end "2017-10-27"
 :password nil})
 …])

(defn process-customer [c]
 (dosync
 (reserve-flight (:orig @c) (:dest @c) (:start @c))
 (reserve-flight (:dest @c) (:orig @c) (:end @c))
 (reserve-room (:dest @c) (:start @c) (:end @c))
 (reserve-car (:dest @c) (:start @c) (:end @c))
 (ref-set c (assoc @c :password (generate-password)))))

Based on: Minh, Chung, Kozyrakis, Olukotun (2008). STAMP: Stanford Transactional Applications for Multi-Processing (IISWC’08)

Customers are processed  
in parallel

8

(defn process-customer [c]
 (dosync
 (reserve-flight (:orig @c) (:dest @c) (:start @c))
 (reserve-flight (:dest @c) (:orig @c) (:end @c))
 (reserve-room (:dest @c) (:start @c) (:end @c))
 (reserve-car (:dest @c) (:start @c) (:end @c))
 (ref-set c (assoc @c :password (generate-password)))))

But more fine-grained
parallelization is possible

9

(defn process-customer [c]
 (dosync
 (send (rand workers) :flight (:orig @c) …)
 (send (rand workers) :flight (:dest @c) …)
 (send (rand workers) :room (:dest @c) …)
 (send (rand workers) :car (:dest @c) …)
 (ref-set c (assoc @c :password (generate-password)))))

serializability broken

Observations:

Actors often share memory  
⇒ races & deadlocks possible

Transactions contain subtasks that may be parallelized 
⇒ serializability broken

Actors + Transactions = Problems
10

Solution: Transactional Actors

11

(dosync
 (dosync
 (ref v)
 (deref r)
 (ref-set r v)))

(behavior [] []
 (dosync
 (ref v)
 (deref r)
 (ref-set r v)))

(dosync
 (behavior [] [] …)
 (spawn beh state)
 (become beh state)
 (send actor msg))

(behavior [] []
 (behavior [] [] …)
 (spawn beh state)
 (become beh state)
 (send actor msg))

Transaction in... Actor in ...

...
in

 tr
an

sa
ct

io
n

...
in

 a
ct

or

?

?

Transactional memory in actors

12

(behavior [] [c]
 (process-customer c))

(defn process-customer [c]
 (dosync
 (reserve-flight (:orig @c) (:dest @c) (:start @c))
 (reserve-flight (:dest @c) (:orig @c) (:end @c))
 (reserve-room (:dest @c) (:start @c) (:end @c))
 (reserve-car (:dest @c) (:start @c) (:end @c))
 (ref-set c (assoc @c :password (generate-password)))))

Similar to thread-based systems

Actors in a transaction

13

(dosync

 (def airline-beh
 (behavior [flights]
 …))

 (spawn airline-beh @flights)
 (become airline-beh @c)

 (send :process-customer @c))

Difficulty: side effects in transaction

separate from transaction, 
no side-effect

delay side effect 
until commit (pessimistic)

sent immediately, but 
rolled back on abort 
(optimistic)

⤺

⤺

✓

Sending a message  
in a transaction

Message depends on the transaction

Receiving turn is tentative:

• Side effects (spawn, become) delayed

• At the end, wait for dependency to commit

14

(behavior [] [msg]
 (dosync
 (send b :msg)
 …))

(behavior [] [msg]
 …)

wait here until t1 commits

1

Special case: 
Message in tentative turn

Dependency is forwarded

15

(behavior [] [msg]
 (dosync
 (send b :msg)
 …))

(behavior [] [msg]
 (send c :msg)
 …)

(behavior [] [m]
 …)

wait here until t1 commits wait here until t1 commits

1

1

Special case: 
Transaction in tentative turn

Transaction in tentative turn waits before it commits

⇒ serializability maintained

16

(behavior [] [msg]
 (dosync
 (send b :msg)
 …))

(behavior [] [msg]
 (dosync
 …)
 …)

no need to wait

wait here until t1 commits

1

Properties

Serializability

side effects on actors part of transaction

but: other side effects not allowed in tentative turns

Free from deadlocks

dependencies always from new to old

but: transactions cannot cross turns

Free from low-level races

granularity of turns & transactions

17

Implementation

Fork of Clojure

• STM built-in

• Regular actors added

• Transactional Actors as modifications of STM & actors

Details in paper

https://github.com/jswalens/transactional-actors

18

https://github.com/jswalens/transactional-actors

Evaluation: Vacation benchmark

Speed-up limited: 2.6  
because of conflicts

19

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of worker actors (p)

0

1

2

3

S
pe

ed
-u

p

time = 5480 ms

For p = 42:
speed-up = 2.6
time = 2102 ms

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of primary worker actors (p)

0

5

10

15

20

25

30

35

S
pe

ed
-u

p

For p = 1, s = 1: time = 13701 ms

For p = 46, s = 1:
speed-up = 18.4
time = 743 ms

For p = 42, s = 8:
speed-up = 33.2
time = 413 ms

s = 1

s = 2

s = 8

s = 64

Original

Transactional Actors

Better speed-up due to:
• finer-grained parallelism
• fewer/cheaper conflicts

For 1 thread: much slower

Limitations & Future Work

• Implement optimizations

• Evaluate:

• More benchmark applications (suggestions?)

• Comparison with related work (performance & software
quality atttributes)

• Formalize of semantics and properties

20

Summary
Problem:
Shared memory & message passing 
often combined, but breaks properties

Solution: 
Transactional Actors
• Messages have a dependency
• Transaction aborts 
⇒ all its effects are rolled back

Benefits:
• serializable, deadlock free, race free
• finer-grained parallelism 
⇒ higher speed-up

21

Actors

ThreadsFutures
BigBlueButton

BlueEyes

CIMTool
Diffa

ENSIME

Evactor Gatling

GeoTrellis
Kevoree
ScalatronSignalCollect

Socko
Spark
Spray

ThingML

(behavior [] [msg]
 (dosync
 (send b :msg)
 …))

(behavior [] [msg]
 …)

wait here until t1 commits

1

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of primary worker actors (p)

0

5

10

15

20

25

30

35

S
pe

ed
-u

p
For p = 1, s = 1: time = 13701 ms

For p = 46, s = 1:
speed-up = 18.4
time = 743 ms

For p = 42, s = 8:
speed-up = 33.2
time = 413 ms

s = 1

s = 2

s = 8

s = 64

Message in transaction  
in tentative turn

23

(behavior [] [msg]
 (dosync
 (send b :msg)
 …))

(behavior [] [msg]
 (dosync
 (send c :msg))
 …)

1

(behavior [] [m]
 …)

no need to wait

wait here until
t1 commits wait here until t2 commits

2

