Chocola: Integrating Futures,
Actors, and Transactions

Janwillem Swalens
Joeri De Koster
Wolfgang De Meuter

~/ ... H VRIJE
@) Languages.Lab UNIVERSITEIT

There are many different
concurrency models

f ForkAoin locks Communicating Sequential Processes
utures prowmises threads actors activeohests

Nested Data Parallelism

dataflow Software Transactional Memory MPI

Concurrent Revisions worlds OPQVIMP transactional events
speculative parallelism

Programmers combine these
in a single application

e 00 Postva "
/ & Postvak IN [Add-ons Manager > a
N GetMail |~ [Z wWrite W Chat @ Address Book @ Tag ~ Y QuickFilter W Language ~ [Q Search... <®K> =

QuickFilter: @ « 2 O U Q, Filter these messages... <O #8K>
1L 0 Subject

atomic » -

[5] Verzonden berichten

e @ Date i ®=
Q . = i , .
l nt e e r Léd Alle berichten (6682) [feed-update] Google Cloud Platform Blog: SwiflQ cto...
[Software Architectures]

3 Spam

Beautiful pictures

» = Prullenbak .
/@ Postvak UIT Test mall 16:47
> (@ jw00000@gm...om (31414) | « + 16:40
Lokale mappen : 0 bl

Beautiful picture

z2*)=]e&le]

| attached some photos to this mail.

3 attachments | save all | gallery view “ re s

sunrise.jpg
284 KB | open | save

autumn.jpg
523 KB | open | save

(sSSSSSw W] Ongelezen: 63 thaal: 137

é l?ownloading 1165 of 3575 in @Hotmail

Observation 1: programmers combine
concurrency models

Actors

15 Scala programs with actors:

Threads ' '
FutureSBlueEyes - 12/15 (80%) combine with
eceiiels Diffa BigBlueButton another model
Kevoree CiMTool
SignalCollect Scalatron ENSIME

+ 6/15 (40%) say they circumvent
it where itis “not a good fit”

Spark
Spray Socko

Evactor Gatling
ThingML

Tasharofi, Dinges, and Johnson (2013). Why Do Scala Developers Mix the Actor Model with Other Concurrency Models? (ECOOP’1 3)4

Observation 2: programming languages
support many concurrency models

Clojure Scala Java

Haskell C++

Deterministic models
Futures

Promises

Fork/Join

Parallel collections
Dataflow

Shared-memory models
Threads

Locks

Atomic variables
Transactional memory

Message-passing models
Actors

Channels

Agents

built in
e library

supported models

10 38 7 5 5

\>Clojure has 10 concurrency models built in

Programmers combine
multiple concurrency models
Which problems can this cause?

Are the usual guarantees of
concurrency models broken?

Goal

Framework that combines:

/f oin IOOI(S Communicating Sequential Processes

‘ U‘l’Ul’QSi promises) o

“Nested Vata Parallelism ﬂ"’eads actors| activeobjects
MPI

dataflow | Software Transactional Memory

Concurrent Revisions OPQHMP transactional events
speculative parallelism

a Separate models: backward compatibility

@ Combinations: maintain guarantees of all models
T impossible: define a less restrictive guarantee

Futures

(defn parallel-filter [f xs]
(let [[partl part2] (partition 2 xs)
(fork (filter f partl))
(fork (filter f part2))]
(concat (join) (join))))

()
&

i
filter
filter

GGuarantee:

determinacy

Actors

(def flights
{"BA212" {:from "BOS" :to

"BA213" {:from "LHR" :to

(def airline-behavior
(behavior [flights]

(let [flight

]

flights’ (reserve

"LHR" :price 499 :seats 243}
"BOS" :price 499 :seats 243}})

(search-flight flights
-seats flights flight)]

(become airline-behavior flights’))))

(def british-airways (spawn airline-behavior flights))
(send british-airways

Guarantees:

F
DLF

isolated turn principle’

deadlock freedom

> ¥
'

4 Airline)
{BA212 -» 243
BA213 » 243}
reserve

3 4 // R
(reserve-seats ..)

\S =~

* De Koster, Van Cutsem, De Meuter (2016). 43 Years of Actors: A Taxonomy of Actor Models and Their Key Properties (AGERE'16)

9

Transactions

(def flights

{"BA212" (ref {:from "BOS" :to "LHR" .. :seats 243})
"BA213" (ref {:from "LHR" :to "BOS" .. :seats 243})})

(defn reserve-seats [flight n]
(let [flight’ (update (deref flight) :seats - n)]
(ref-set flight flight’)))

(atomic

(reserve-seats (get flights "BA213") 3)
(reserve-seats (get flights "BA212") 3))

BA212243
Guarantees: BA213 (243
Iso | isolation (e.g. serializability) ,
(atomic
Pro | progress (e.g. deadlock freedom) (reserve-seats ..))

——

T — T

10

Deterministic

Summary

Transactions

Shared memory

Actors

Message passing

(fork e)
(jJoin £f)

Determinacy

(atomic e)

(ref

V)

(deref r)
(ref-set r v)

o)

Pro

Isolation

Progress

(behavior [x] [x] e)
(spawn b v)

(send a v)

(become b v)

ITP |Isolated turn principle

DLF |Deadlock freedom

We studied the combinations of
futures, transactions, and actors

inQer
Sind Future Transaction Actor
(fork (fork (fork
v (fork ..) (atomic ..)) (spawn ..)
= (join ..)) (send ..)
5 (become ..))
L
- (atomic (atomic (atomic
k) (fork ..) (atomic ..) (spawn ..)
| © (join ..)) (ref ..) (send ..)
3 A (deref ..) (become ..))
51 C
oO| © (ref-set ..))
|_
(behavior [] [] (behavior [] T[] (behavior [] []
(fork ..) (atomic ..)) (spawn ..)
S| (join ..)) (send ..)
zg (become ..))

“Naive” combinations cause problems

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
v in future
-]
= Det)E NE
E Det Det

outer

[Iso][Pro]

%) (DLF

Parallelism in

Nested transactions

Communication

! o=) @)

= | [s6](Pro) 7P [DLF
Parallelism in actor Shar.ed mtirrnory Actors

E Det [Iso | Pro] [ITP |(DLF)
7P [DLF 17#] [DLF)

“Naive” combinations cause problems

inner
Sind Future Transaction Actor
Nested futures Parallel transactions Communication

in future

Det tm tﬂ
[Iso | Pro] [17 | DLF)

Parallelism in Nested transactions Communication
transaction in transaction

[Iso}[Pro] Uso/][ProJ
156 Pro 1%) DLF)

Parallelism in actor Shared memory Actors
in actor

[Iso |[Pro] [ITP |(DLF)
DLF] 7P | (DLF]

Future

outer
Transaction
g

Actor
Bl
)

Swalens, De Koster, De Meuter (2016). Transactional Tasks: Parallelism in Software Transactions (ECOOP’16)
Swalens, De Koster, De Meuter (2017). Transactional Actors: Communication in Transactions? (SEPS'17)

Actors & Transactions

(def airline-behavior
(behavior,
[orig des
(atomic®

Ny~
B _

transaction in actor

(let [flight (search-flight flights orig dest)]
(reserve-seats flight n)))))

(def airline (spawn airline-behavior))

(def travel-agent-behavior

(atomicw«

(sendik
orig dest n)

(send airline
dest orig n))))

W] actor in transaction

C Travel Agent)

¢ . A

(atomic |
(send m)///
(send ..))

\S 7,

&i

.

BA212/243
BA213/243 \
4 Airline / A
4 . N
(atomic

(reserve-seats)

)

=

T —

R

Actors & Transactions

Actor in transaction

(atomic
(send airline o d)
(send airline d o)
(ref-set ..))

= Js6
Solution:

Tentative messages,
“unsent” if transaction aborts

Transaction in actor

(behavior [..]

[..]

(atomic

- ([

Solution:

Inevitable, so we introduce
Low-Level Race Freedom

| IFP]>{LLRF

Swalens, De Koster, De Meuter (2017). Transactional Actors: Communication in Transactions? (SEPS’17)

Transactions & Futures

(def airline-behavior
(behavior []
[orig dest n]
(atomicw
(let [£1Tght (search-flight flights orig dest)]

(reserve—s?xts 5?{%ht n)))))

(defn seaf@h—flight [flights orig dest]
(first : - 2

AMIRERS future in transaction

n [flight] (and (= (get @flight :from) orig)

(= (get @flight :to) dest)))

(valfvflights)))) —
(defn parallel-filter [fxs] @
(let [[partl part2] (fartition 2 Xxs) BA212)243
futurel (fork@{filter f partl)) BA213|243
future2 (fork (filter f part2))]
(concat (join futurel) (join future2)))) (atomic
filter

filter)

Transactions & Futures

Future in transaction

(atomic
(fork (filter f partl))
(fork (filter f part2)))

= Is6 |
Solution:

Futures work on conceptual
copy of transactional
memory

Their changes are joined into
parent

Transaction in future

(fork
(atomic

- [oet

Solution:

Inevitable and expected in
languages with transactions,
SO we introduce
Intratransaction Determinacy

Dét)-(I>

Swalens, De Koster, De Meuter (2016). Transactional Tasks: Parallelism in Software Transactions (ECOOP’16)

Futures & Actors

(def travel-agent-behavior

ctor

(fork (book-flight dest orig n))))

2

C Travel Agent)

f N
book >
book >

\& 7,

Futures & Actors

Future in actor

(behavior [..]

[...]
(fork (book-flight o d))

(fork (book-flight d o0)))
adbiid
Solution:

Require all futures to be
joined before end of turn

7P|

Actor in future

(fork
(send (filter f partl))

(send (filter f part2)))

(o

Solution:

Inevitable, but expected

20

Chocola:

c’'omposable concurrency language

inQer
Sind Future Transaction Actor
Nested futures Parallel transactions Communication
v in future
| Iso | Pro]| [ITP |(DLF)

outer

Parallelism in

Nested transactions

Communication

ITP

)
—

[DLF|

[I[P }>|LLRF|(DLF|

-§ transaction in transaction

O

ki [Det]>{ITD | [Iso || Pro] [Iso |(Pro]

£ | (150 |(Pro] (177 }>(LLRF)(DLF]
Parallelism in actor Shared memory Actors

= in actor

g (150 |[Pro] (1TP |(DLF)

21

Implementation

Extension of Clojure
« Futures & Transactions: built into Clojure
. Actors: simple implementation

- Combinations: by modiftying the above

http://chocola.soft.brussels

https://github.com/jswalens/chocolalib

22

http://chocola.soft.brussels
https://github.com/jswalens/chocolalib

Formalization of operational semantics

Uniform formalization of three separate models

Program state

Task

Program state P = (T) Transactions
Tasks T C Task snapshot, local store

Task gtaske Task == (f e) Transaction

Transaction id
Transaction state

p = (T.7.0)
L Program state
task € Task = (f e n’) 5
)) Actors
T : TransactionNumber — Transaction
- Inboxes

Program state
Actors

Tasks

Inboxes

ansactions

Transactio

Ta

Transaction

Spawned and joined futures
Effects on actors
Transactional context
Message

As before:

Behavior

Snapshot, local store
Transaction id

Transaction state
R ———————

: TVar — Value
Transaction = (0.7, ¢, 4)
€ TransactionNumber = NT

P =
A C Actor
T C Task

<a7fr?oot= beh, néep>
if a e F Fj eff ctx’)

tx € Transaction:= (o,)
Fs, F; C Future
eff = (& beR’)
ctx = (n, 7,0, effy)

msg € Message (Afrom s Gtos V, nzlep>

beh € Behavior
0,0 : TVar — Value
n € TransactionNumber

> |V | X

(b, v)

o =

p
A C Actor

Actor

msg € Message ::

€ Behavior 1=

(A, w)

: Address — Message

(a, €. beh)
(b, V)

<afrom , Qto s v>

23

Formalization

same constructs, but take context into account

commit,/|C
(AUJact, TU (f. a, E[atomick v], Fg. Fj, eff, (n, 7, 0. effx)), o, TIn = (>, €)]. 0)
— (AUact, TU (f, a, E[v]. F, Fy, eff;. o), p, T[n = (V. €)], 0 ::)

where act = (a. fio0r. beh, néep>

if Vr € dom(9) : o(r) = 7 (r) (no conflicts)
Vf. € tx-futs(T,n) : £, € F; (all futures spawned in the tx must have been joined)
nfiep = e or T(nziep) = (/. ¢ (in a definitive or a success{SEEWPle

(A, TU(f, a, E[spawn by V], F,, F;, eff, ctx’), pu, 7. 0)
— (A, TU (f. a, E[a.], Fs, Fj, eff | ax’), pla. = []], 7. 0)

commity| with a, fresh

with eff, = eff += effiy

(A, TU (f, a, E[atomicx v], F, Fj, eff, (n. 7, §, effw)), p. 7[n — (>, €)], @ act, = (a.. o, (b, V), o)
— (A, TU (f, a, E[atomic €], F;, Fj, eff, o), p, 7[n — (X, €)]. 0) ifctx’ = o ctx' = o (outside transaction)
if Ir € dom(0) : o(r) # o (r) (aq eff = eff += (act,. o)
Vf. € tx-futs(T,n) : f, € F; (all futures spawned in the tx mustj ifctex’ = (n, 7, 0, effy): X’ = (n, 7, 0, eff, += (act,, ®)) (in transaction)
/
commit, | eff = eff
(AUact, TU (f, a, E[atomicx v|, Fs, Fj, eff, ctx), p, 7, 0) become|.
— (AUact, T/, u, 7, o) (A, TU (f, a, E[become b, V], Fs, F;, eff, ctx’), p. 7, 0)
where act = (4. froot. beh. ngep) — (A, TU (f, a, E[nil], F, Fj, eff, ctx’), p, 7, 0)
if 7(ngep) = (X. €) (in a fail if ctx’ = o ctx' = o (outside transaction)
with act/ = (a, e beh, e) (resetd : eff = eff += (. (e, 7))
with < . 5 - p = _ . :
T’ =T\ actor-tasks(T, a) (abort and remove all§ ifctx’ = (n, 0, 6, effx): ctx’ = (n, 7, §, effy += (D, (be, ¥))) (in transaction)
#(n) = {<X, nil) ifn € actor-txs(a) (abort all f1 eff’ = eff
7(n) otherwise turn, if send|

‘(A Wact, TU (f, a, E[send ay, V. Fs, Fj, eff. ctx’), plaw — msgl. 7. 0)
— (AUact, TU (f, a, E[nil], K, Fj. eff’, ctX’), pla +— Msg - msg). 7, 0)
where act = (a. fioor. beh. nfiep>

with msg = (a, ai,. v, nl)

msg
Nk ifctx’ = (ny, 0.0, effiy) (in transaction)
Nisg = nzlep if ctx’ = e and nZIep + o (in tentative turn)
° otherwise (definitive)

24

Evaluation approach

(1) selection of benchmarks

Application Transaction Average time in

" Labyrinth
Bayes

Yada
. Vacation-high
enome
Intruder

Kmeans-high
SSCA2

(2 parallelization
Bayes

(parallel loo
%\P P] Vacation2
Dependencies be-

tween terations? o };ﬁj;:lgggﬁﬂd} Labyrinth
o o —{negative resull] Yada
(3 evaluation criteria
performance: speed-up
developer effort: lines changed + qualitative assessment

Minh, Chung, Kozyrakis, Olukotun (2008). STAMP: Stanford Transactional Applications for Multi-Processing (1ISWC’08)

25

Evaluation results

Speed-up Speed-up Lines of code
original Chocola added
Labyrinth 1.3 7 2.3 +11%
3 cores
Bayes 28 7 35 +1
Vacation?2 26 7 33.2 +8% 64 cores
Yada futures/actors not applicable

Better performance for little effort

https://github.com/jswalens/{labyrinth,bayes,yada,vacation2}

26

https://github.com/jswalens/

Limitations & Future work

- Formal proofs of guarantees
- Applicability & more benchmarks

- Comparison of implementation techniques

27

Conclusion

Actors

Threads

BlueEyes .
Diffa BigBlueButton

Futures

Concurrency models are combined

GeoTrellis

SignalCollect

Naive combinations violate guarantees

We studied the combinations of

. Nested futures Parallel transactions Communication
v in future
futures, transactions, and actors :
c Parallelism in Nested transactions Cpn:g:sr;igzgﬁn
= Chocola: maintain guarantees : (577 }-{ceve) B

Parallelism in actor Shared memory Actors

wherever possible

Q http://chocola.soft.brussels

Actor

(47 -{LLRF)[DLF]

28

http://chocola.soft.brussels

