
Zero-Knowledge Proofs for
Verifiable Computation
on Data Streams

Lode Hoste
Janwillem Swalens

FOCUS > IDEAS

requires quality data

2022 >1.5b
2021 >750m
2020 >250m

5G usage

© 2023 Nokia5

An unrivalled track record of innovation led by Nokia Bell Labs

Nobel Prizes9 Turing Awards5 Emmys3 Grammys2 Oscar1

Foundations of …

• The entire electronics
industry

• The internet, networking
and optics

• Mobile and fixed
communications

Transistors

Solar cells

Laser/fiber optics

Charge-coupled
devices

Unix/C/C++

Super-resolution
microscopy

Satellite comms

Coherent optics

© 2023 Nokia7

Zero-Knowledge Proofs for
Verifiable Computation
on Data Streams

Lode Hoste
Janwillem Swalens

© 2023 Nokia8

Zero-Knowledge Proofs

A prover can convince a verifier that a statement is true,
without revealing anything besides the fact that the statement is true.

Prover VerifierProof !

I know a " such that # = % &, "

% = pre-agreed program
& = public input
" = private input
= output

Goldwasser, Micali, and Rackoff (1985). “The knowledge complexity of interactive proof-systems.”
Proceedings of the 17th Annual ACM Symposium on Theory of Computing.

• Completeness: if the statement is true, an honest prover can convince an honest verifier of this fact.

• Soundness: if the statement is false, a cheating prover cannot convince an honest verifier that it is true
(except with some small probability).

• Zero-knowledge: the verifier learns nothing other than the fact that the statement is true.

© 2023 Nokia10

Example: the green and red ball and the colorblind friend

Note that:

• Not a mathematical proof, but a probabilistic “proof”.
After (steps, the probability of soundness error is 1/2!.

⇒ “argument of knowledge”

• This example requires interaction between prover and verifier.

• I don’t give away which ball is which = zero-knowledge.

or

© 2023 Nokia12

Since then…

1986: everything in NP has ZKP

1992: succinctness
Kilian (1992). “A note on efficient zero-knowledge proofs and arguments.”
Proceedings of the 24th Annual ACM Symposium on Theory of Computing.

1995: succinct & non-interactive
Micali (1995). “Computationally-Sound Proofs.”
Logic Colloquium.

Non-interactive protocols do not require
interaction between prover and verifier.

(Strong) succinctness:

• Proof is short: ! = -" log 1
where |1| = length of computation,
3 = security parameter

• Proof is fast to verify:
time 8 = -" & , log 1
here |&| = size of input

1985: introduction of zero-knowledge proofs
Goldwasser, Micali, Rackoff (1985). “The knowledge complexity of interactive proof-systems.”
Proceedings of the 17th Annual ACM Symposium on Theory of Computing.

1988: non-interactive ZKPs
Blum, Feldman, Micali (1988). “Non-Interactive Zero-Knowledge and Its Applications.”
Proceedings of the 20th Annual ACM Symposium on Theory of Computing.

© 2023 Nokia13

Since then…
1985: introduction of zero-knowledge proofs
Goldwasser, Micali, Rackoff (1985). “The knowledge complexity of interactive proof-systems.”
Proceedings of the 17th Annual ACM Symposium on Theory of Computing.

1988: non-interactive ZKPs
Blum, Feldman, Micali (1988). “Non-Interactive Zero-Knowledge and Its Applications.”
Proceedings of the 20th Annual ACM Symposium on Theory of Computing.

2012: “SNARK”s exist for generic computations
Bitansky, Canetti, Chiesa, Tromer (2012). “From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again.”
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.

1986: everything in NP has ZKP

1992: succinctness
Kilian (1992). “A note on efficient zero-knowledge proofs and arguments.”
Proceedings of the 24th Annual ACM Symposium on Theory of Computing.

1995: succinct & non-interactive
Micali (1995). “Computationally-Sound Proofs.”
Logic Colloquium.

2010: without the PCP theorem
Groth (2010). “Short Pairing-Based Non-interactive Zero-Knowledge Arguments.”
Asiacrypt.

2013: quasi-linear proving time
Gennaro, Gentry, Parno, Raykova (2013). “Quadratic Span Programs and Succinct NIZKs
without PCPs.” Eurocrypt 2013.

SNARK = succinct non-interactive
argument of knowledge

2016: launch of Zcash

© 2023 Nokia14

…to now

“Cambrian explosion” of proof systems

Zero-Knowledge Proofs as a fundamental building block for Web3

Smart contractsAnonymous CredentialsScaling blockchainsPrivacy on blockchains

© 2023 Nokia15

Introduction to
zk-SNARKs

© 2023 Nokia16

System overview
Set-up

Program
(in DSL)
Circom,
Zokrates,
Leo, Zinc,
Cairo…

Program
in SNARK-
friendly
format
R1CS, AIR,
Plonk-CG

compiler set up 9#
prover key

9$
verifier key

Note: some variations depending on proof system

© 2023 Nokia17

System overview
Prover

execute !

proof
&

public input

"

private input

#

output
Program

execution
trace

prove

9#
prover key

© 2023 Nokia18

System overview
Verification

!

proof

#

output

9$
verifier key

accept /
reject

verify

&

public input

Program

© 2023 Nokia19

System overview

Program
(in DSL)
Circom,
Zokrates,
Leo, Zinc,
Cairo…

Program
in SNARK-
friendly
format
R1CS, AIR,
Plonk-CG

compiler set up 9#
prover key

9$
verifier key

execute !

proof
&

public input

"

private input

#

output
Program

execution
trace

prove

9#
prover key

!

proof

#

output

9$
verifier key

accept /
reject

verify

&

public input

~30s ~60s

~1s ~10s ~20ms

Times for Groth16 using Zokrates,
other systems make other trade-offs.

© 2023 Nokia20

Running example
Compute and prove correct execution of:

def	func(w1,	w2,	w3):
return	w1	*	w2	*	w3

: ∶ <%%×<%%×<%% → <%%
: ∶ "%, "&, "' → "% ∗ "& ∗ "'

All operations are on integers in a field <# , with @ a prime number.
All operations are using modulo arithmetic.
For the example, @ = 11.
In Circom, ! = 21888242871839275222246405745257275088548364400416034343698204186575808495617
(a prime slightly smaller than 2&()).

This system only supports integers and modulo arithmetic!
⚠ Watch out for overflows!

© 2023 Nokia21

Running example
Flattening to constraints

def	func(w1,	w2,	w3):
return	w1	*	w2	*	w3

def	func(w1,	w2,	w3):
w4	=	w1	*	w2
w5	=	w4	*	w3
return	w5

Flatten

SHA256 ≈ 40K constraints
ECDSA sig. verification ≈ 90K

The compiler flattens the program to a list of constraints,
e.g. Rank-1 Constraint System (R1CS).

Note: different compilers can give very different representations,
so opportunity for compiler optimization.
E.g. in this example, you could do the multiplications in the opposite order.

© 2023 Nokia22

Running example
Convert to arithmetic circuit

def	func(w1,	w2,	w3):
return	w1	*	w2	*	w3

def	func(w1,	w2,	w3):
w4	=	w1	*	w2
w5	=	w4	*	w3
return	w5

Flatten

Represented as an
arithmetic circuit
(DAG)

w1 w2

w3w4

w5

g1

g2

g1,	g2		= gates (multiplication & addition in 7!!)
w1,	…	,	w5	= wire labels or wire values

SHA256 ≈ 40K constraints
ECDSA sig. verification ≈ 90K

© 2023 Nokia23

Running example
An execution is an assignment

def	func(w1,	w2,	w3):
return	w1	*	w2	*	w3

def	func(w1,	w2,	w3):
w4	=	w1	*	w2
w5	=	w4	*	w3
return	w5

Flatten

Represented as an
arithmetic circuit
(DAG)

w1 w2

w3w4

w5

g1

g2

g1,	g2		= gates (multiplication & addition)
w1,	…	,	w5	= wire labels or wire values

2 3		

46

2

g1

g2

Assignment (witness & public inputs)
W = "1,"2, "3, "4, "5 = {2,3,4,6,2}
(All computations performed in *!!, i.e., mod 11)

SHA256 ≈ 40K constraints
ECDSA sig. verification ≈ 90K

© 2023 Nokia24

Valid assignments

Nokia internal use

An assignment is valid if it was
produced by actual circuit execution,
i.e. satisfies the constraints imposed
by the gates

⇒ a valid assignment is a proof of
correct circuit execution.
But it is not succinct nor fast to
verify.

Goal: create a verifiable
computation protocol: a protocol to
succinctly transfer an assignment to
a verifier & allow it to verify the
validity succinctly.

w1 w2

w3w4

w5

g1

g2

g1,	g2		= gates (multiplication & addition)
w1,	…	,	w5	= wire labels or wire values

2 3		

46

2

g1

g2

Assignment (witness & public inputs)
W = "1,"2, "3, "4, "5 = {2,3,4,6,2}
(All computations performed in *!!, i.e., mod 11)

© 2023 Nokia25

Demo

⋀ GATE

Circuit Design Execution

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs https://github.com/lhoste-bell/snarkjs_multiand

Circuit Design Execution

https://github.com/lhoste-bell/snarkjs_multiandIntroducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs

Circuit Design Execution

https://github.com/lhoste-bell/snarkjs_multiandIntroducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs

Circuit Design Execution

https://github.com/lhoste-bell/snarkjs_multiandIntroducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs

Circuit Design Execution

https://github.com/lhoste-bell/snarkjs_multiandIntroducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs

Circuit Design Steps

https://github.com/lhoste-bell/snarkjs_multiandIntroducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs

circuit.circom

R1CS

SnarkJS

prover.js

verifier.js

Circuit Design Steps

https://github.com/lhoste-bell/snarkjs_multiandIntroducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs

circuit.circom

R1CS circuit.wasm

SnarkJS

prover.js

verifier.js

witness

result + proof

success

https://github.com/lhoste-bell/snarkjs_multiand

© 2023 Nokia37

The mathematics behind
zk-SNARKs

© 2023 Nokia38

Goal

• To give you some intuition of the math behind ZKPs

• Using a simple end-to-end example

• But there are many different systems out there and they’re constantly evolving…

Following slides: Pinocchio / Groth16, one of many systems

Parno, Howell, Gentry, Raykova (2013). “Pinocchio: nearly practical verifiable
computation”. Proceedings of the 2013 IEEE Symposium on Security and Privacy.

Groth (2016). “On the size of pairing-based non-interactive arguments”.
Eurocrypt 2016.

© 2023 Nokia39

Trick 1: Succinctly proving knowledge of a polynomial
How to prove something succinctly?

Simple case: Verifier has a polynomial I(&) of degree L. Prover claims to know I(&), i.e., knows the coefficients:

• Verifier sends a random value M and asks the prover to return I(M)

• Verifier computes I(M) on his own and compares results

This trick allows us to create a succinct proof:
evaluating at a single point is sufficient to reveal the identity of the polynomial

© 2023 Nokia40

Schwarz-Zippel lemma

Take I(&) and N(&) polynomials of degree L.

If ! " = $("):
I & − N & = 0 ∀&

If you take a random &,
I & − N(&) will always be 0.

If ! " ≠ $("):
I & − N & = 0 for at most L values of &

If you take a random &,
I & − N(&) is extremely likely to not be 0.

In our case, L ≈ 10+ (number of constraints), range of & ≈ 2&() ≈ 10+, (field size)

⇒ Prob(randomly chosen point & is one of the L common points) = %-"
%-"# ≈ 0

Trick: evaluating P and Q at a random point & will tell us with high probability whether they’re equal.

© 2023 Nokia41

Trick 2: Blind evaluation of a polynomial
How to hide the actual values from the verifier?

Verifier sends encrypted powers of M (e.g. R M& , R M% , R M-) to the prover (instead of M)

Suppose: R & = S. TUL (, R & ∗ R # = R & + # , R[&]/ = R[& ∗ #]

Prover computes R I M :

R I M
= R "&M& + "%M% + "-M-
= R "&M& ∗ R "%M% ∗ R "-M-

=Y
01-

&
R["0M0]

=Y
01-

&
R M0 2$

⇒ the verifier does not need to send M, everything can happen on encrypted values

0 = large prime, 1 = generator of a group with a hard to
compute discrete log, e.g., elliptic curves

e.g. 2 3 = 4%3% + 4!3! + 4&3&

with (encrypted) values from verifier, this can be computed by prover

© 2023 Nokia42

Proving correct program execution using polynomials
We encode “proving correct program execution” as
“proving knowledge of a (specifically crafted) polynomial”
We encode the program (= constraints imposed by gates on wires)
into a set of polynomials {@ & } = Quadratic Arithmetic Program (QAP)

and a target polynomial Z & = & − S% & − S& …(& − S3) where 9" = random int (chosen by verifier), : = number of gates

The prover evaluates the program and generates an assignment \ = "%, "&, "', "4, "(.

Using the assignment and QAP, the prover derives a single polynomial, ! " = ∑0∈6"0@0 & .

We will create the QAP such that:

If and only if I(&) is derived from a valid assignment, then I & is expected to be 0 for & ∈ S%, S&, … , S3 ,

⇒ I & will be divisible by Z & ⇒ I & = Z & _(&) (where _ & =
7 .
8 .)

Hence, a proof of correct execution consists of convincing a verifier that the prover knows I(&) and _(&) that satisfy these
equations.
The equations can be verified succinctly (at a single point, trick 1) and without sharing the assignment (I(&) is not shared,
hence zero-knowledge).

One polynomial per input & output

© 2023 Nokia43

Verifiable Computation Protocol – High Level

• Trusted setup (once per circuit):

• Encode program into polynomials: $ " , & "
• Generate random point M and compute Z(M) [1]

• Prover

• Evaluate program and generate an assignment, \ = {"%, "&, "', "4, "(}

• Using assignment to derive I & = ∑0∈6"0@0 & . Then compute _(&) = 7 .
8 .

• Generate proof of computation: I M , _ M [2]

• Verifier

• To verify the proof, check: I(M) = Z(M) ∗ _ M [3] [4]

[1] Homomorphically encrypted powers of 6 (7 8' , 7 8'(! , … , 7 8! , 7 8&) and 7[<(6)] are generated, and then 6 is destroyed.

[2] Prover returns 7 2 6 , 7[@(6)], since it only has access to encrypted powers of 6

[3] This check is performed in encrypted domain using cryptographic pairing friendly Elliptic curves.

[4] A check that forces the prover to only use the encrypted power of 6 is also performed. This requires additional randomness from trusted setup.

Succinct proof of execution & quick verification is possible with specially constructed polynomials ! " & {% " }
such that when '(") is derived from valid assignments, then ' " = ! " + "

© 2023 Nokia44

Encoding Program Structure Into Polynomials

Program: Arithmetic Circuit
w1 w2

w4
w3

w5

g1

g2

Constraints: Rank 1 Constraint System (R1CS)
Encode circuit structure as constraints

For each gate produce 3 vectors, `, a, U, that encode if a particular wire is a left input, right input, or an output of a gate
(length of each vector = number of wires)

1 0 0 0 0
0 0 0 1 0
91 92 93 94 95

?1
?2

Associate left inputs of gates to wires Associate right inputs of gates to wires Associate outputs of gates to wires

0 1 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

A = assignment = 4!, 4%, 4), 4*, 4+ , ∘ = dot product`, a, U satisfy the constraint: ` ∘ \ ∗ a ∘ \ − U ∘ \ = 0

0
0
0
1
0

∘

41
42
43
44
45

∗

0
0
1
0
0

∘

41
42
43
44
45

−

0
0
0
0
1

∘

41
42
43
44
45

= 0 ≡ 43 ∗ 44 − 45 = 0

Aim: create special Z & , {@ & }
encoding ‘program structure’

such that I & = Z & _ & for
valid assignments

If these constraints are satisfied for all gates ⇔ assignment is valid ⇔ program executed correctly

By encoding constraints as polynomials, large number of constraints can be checked all at once

© 2023 Nokia45

F,! 3 = 11 = 1
F,! 3 = 12 = 0

⇒ H-. (I)= JI + K

Set ' (= (− *+ (− *,

F,* 3 = 11 = 0
F,* 3 = 12 = 1

Polynomials: Quadratic Arithmetic Program (QAP) – Encode constraints as polynomials
• Assign arbitrary distinct integers to gates, e.g., S1 = 5, S2 = 7

• For each wire \0, construct 3 polynomials, d2$(&), e2$ (&), -2$ (&) such that

1 0 0 0 0
0 0 0 1 0

91 92 93 94 95
?1 = 5
?2 = 7

Encoding Program Structure Into Polynomials

When derived from a valid assignment, ! " = 0 for " ∈ /1, /2 ⇒ ! " = $ " 3(")
All R1CS constraints are compressed into a single polynomial equation that can be verified at a single point

⇒ H-/ (I)= LI + M

Lw1(x):
5x+9

Lw2(x): 0 Lw3(x): 0 Lw4(x):
6x+3

Lw5(x): 0

Rw1(x):
0

Rw2(x):
5x+9

Rw3(x):
6x+3

Rw4(x):
0

Rw5(x):
0

Ow1(x):
0

Ow2(x):
0

Ow3(x):
0

Ow4(x):
5x+9

Ow5(x):
6x+3

{f g } =

Matrix encoding wires
acting as left inputs

(Trusted setup phase)

Derive: d & = ∑0∈6"0d2$ & , e & = ∑0∈6"0e2$ & , - & = ∑0∈6"0-2$ & assignment \ = "%, "&, "', "4, "(,

and I & = d & ∗ e & − - &

(Proving phase)

(Single polynomial encodes
constraints from all gates
on w1 acting as left input)

(Encodes constraints from all gates on all wires acting as left input)

(Single polynomial encodes
constraints from all gates on all wires)

Aim: create special Z & , {@ & }
encoding ‘program structure’

such that I & = Z & _ & for
valid assignments

© 2023 Nokia46

Verifiable Computation Protocol

• Trusted setup (once per circuit):

• Encode program structure into polynomials: Z & , @ & = {d2$ & , e2$ & , -2$ & }

• Generate random point M and compute Z(M) [1]

• Prover

• Evaluate program and generate an assignment, \ = {"%, "&, "', "4, "(}

• Using assignment to derive ; < = ∑"∈$>"?%$ < ∗ ∑"∈$>"A%$ < − ∑"∈$>"C%$ < . Then compute _(&) = 7 .
8 .

• Generate proof of computation: d M , e M , - M , _(M) [2]

• Verifier

• To verify the proof, check: d M ∗ e M − - M = _ M ∗ Z M [3] [4]

[1] Homomorphically encrypted powers of 6 (7 8' , 7 8'(! , … , 7 8! , 7 8&) & 7[<(6)] are generated, and then 6 is destroyed.

[2] Prover produces 7 F 6 , 7 N 6 , 7 O 6 , and 7[@(6)], since it only has access to encrypted power of 6.

[3] This check is performed in encrypted domain using cryptographic pairing friendly Elliptic curves.

[4] A check that forces the prover to only use the encrypted power of 6 is also performed. This requires additional randomness from trusted setup.

Compute heavy.
Uses FFT.

Compute heavy. Requires many elliptic curve ops.

© 2023 Nokia48

Universal and transparent SNARKs

Previous approach requires a trusted set-up for each circuit, to:

• Encode program structure into polynomials: Z & , @ & = {d2$ & , e2$ & , -2$ & }

• Generate random point M and compute Z(M)

A universal protocol does not require a trusted set-up for each circuit.

A transparent protocol does not require any trusted set-up at all, instead uses public randomness.

© 2023 Nokia49

Generalizing to other types of zk-SNARKs

In general, you need two ingredients:

1. A polynomial commitment scheme: a way for the prover to commit to the polynomial once.

2. An interactive oracle proof: interactive protocol between prover and verifier.

© 2023 Nokia50

1. Polynomial commitment

We need to “commit” to a polynomial. This has two properties:

• Binding: once the polynomial has been committed, you cannot change it.

• Concealing: it does not reveal the polynomial.

General procedure:

• Prover binds itself to a polynomial I by sending a short string 1UT(I).

• Verifier chooses an & and asks I to evaluate I(&).

• P sends # = I(&), and a proof ! that shows that # is consistent with 1UT(I) and &.

In Pinocchio/Groth16, this is part of the trusted set-up (secret point M and corresponding Z(M)).

In universal protocols, this happens later.

There are many polynomial commitments in literature: Kate/KZG, Bulletproofs, Hyrax, Dory, FRI, Ligero, Brakedown, Orion…

© 2023 Nokia51

2. Interactive Oracle Proof (IOP)

Protocol in which prover and verifier interact to convince that a statement is true.

In our case, that we know a polynomial that satisfies a property (divisible by a certain polynomial).

In Pinocchio/Groth16:

• Verifier/trusted party: generates random point M and compute Z(M)

• Prover: generates proof of computation: d M , e M , - M , _(M) (= QAP evaluated in 6)

• Verifier: checks d M ∗ e M − - M = _ M ∗ Z M

There are many IOPs in literature: Marlin, Plonk…

You can mix and match different polynomial commitment schemes with different IOPs
to get different trade-offs between proving time, verification time, proof size, need for set-up, etc.

There’s a trick to convert an interactive proof protocol into a non-interactive one: the Fiat-Shamir transformation.

© 2023 Nokia53

Recursive proofs

A recursive proof builds on top of a previous proof, to prove an incremental computation.

E.g. # = %B(&)

The proof for h will contain a verifier circuit for the previous proof h − 1 + the circuit of the current computation.

Kothapalli, Setty, Tzialla, (2022). “Nova: Recursive zero-knowledge arguments from
folding schemes.” CRYPTO 2022.
https://github.com/microsoft/Nova

https://github.com/microsoft/Nova

© 2023 Nokia54

Program

Normal compilation

List of instructions in
IR of VM

Execution on zkVM

Recursive proof

zk-VMs
Imagine: F = processing of one VM instruction

Direct execution using arithmetic circuits Execution using VM and recursive proofs

Program

Compilation

Arithmetic circuit

Proof generation

Proof

© 2023 Nokia55

MultiAND in RISC-Zero

#![no_main]
#![no_std]

use risc0_zkvm::guest::env;

risc0_zkvm::guest::entry!(main);

const N: usize = 10;

pub fn main() {
let mut sum = 0;
for _i in 0..N {

let x: u8 = env::read();
sum += x;

}
assert!(usize::from(sum) == N);

}

Compared to Circom:

• Support for strings, floating-point numbers, etc.

• Support for most of Rust (no IO, no random numbers…)

• Larger proofs: -(log 1)
vs. constant size for Circom/Groth16

https://www.risczero.com

https://www.risczero.com/

© 2023 Nokia56

References

Tutorials & courses:

• https://zkp.science: overview of papers, proof systems, implementations…

• https://zk-learning.org: MOOC by Dan Boneh and others

• “The Mathematics behind zk-SNARKs” (https://www.youtube.com/watch?v=iRQw2RpQAVc): in-depth math of Groth16

Software & tools:

• Circom (https://docs.circom.io): circuit language that compiles to SNARKs

• Zokrates (https://zokrates.github.io): Python-like language that compiles to SNARKs

• RISC Zero (https://www.risczero.com): zero-knowledge VM (based on STARK, not SNARK)

https://zkp.science/
https://zk-learning.org/
https://www.youtube.com/watch?v=iRQw2RpQAVc
https://docs.circom.io/
https://zokrates.github.io/
https://www.risczero.com/

© 2023 Nokia57

Private TXs with Tornado Cash

© 2023 Nokia58

Alice

1

Bob

Eve

© 2023 Nokia59

Alice Bob

Eve

1

© 2023 Nokia60

Alice

1

Bob

Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jI

Smart Contract

© 2023 Nokia61

Alice

Bob

Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jI

Smart Contract

0xAlice – 1 ETH
0xCharlie – 1 ETH
0xTed – 1 ETH
…

1

1

1

© 2023 Nokia62

Alice

Bob

Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jI

0xAlice – 1 ETH
0xCharlie – 1 ETH
0xTed – 1 ETH
…

Straw man

π ?1

© 2023 Nokia63

Alice

Bob

Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jI

0xAlice – 1 ETH
0xCharlie – 1 ETH
0xTed – 1 ETH
…

1

π ?1

Straw man

© 2023 Nokia64

BobAlice

secret1, nullifier1

secret1, nullifier1

© 2023 Nokia65

Bob
0xAlice – C1 – 1 ETH
0xCharlie – C2 – 1 ETH
0xTed – C3 – 1 ETH
…

C1 = hash(secret1,nullifier1)

Alice

1

secret1, nullifier1

© 2023 Nokia66

Bob
0xAlice – C1 – 1 ETH
0xCharlie – C2 – 1 ETH
0xTed – C3 – 1 ETH
…

π
C1 = hash(secret1,nullifier1)

Alice

1

secret1, nullifier1

- “I know a secret and a nullifier
such that hash(secret, nullifier) == C1 || C2 || C3”

© 2023 Nokia67

Bob

C1 = hash(secret1,nullifier1)

Alice

1

secret1, nullifier1

- “I know a secret and a nullifier
such that hash(secret, nullifier) == C1 || C2 || C3”

1

π

0xAlice – C1 – 1 ETH
0xCharlie – C2 – 1 ETH
0xTed – C3 – 1 ETH
…

© 2023 Nokia68

Bob
0xAlice – C1 – 1 ETH
0xCharlie – C2 – 1 ETH
0xTed – C3 – 1 ETH

0xBob – nullifier1 – -1 ETH

C1 = hash(secret1,nullifier1)

Alice

1

secret1, nullifier1

- “I know a secret and a nullifier
such that hash(secret, nullifier) == C1 || C2 || C3”

- And I reveal the nullifier
used to compute π

1

π + nullifier1

© 2023 Nokia69

Bob
0xAlice – C1 – 1 ETH
0xCharlie – C2 – 1 ETH
0xTed – C3 – 1 ETH

0xBob – nullifier1 – -1 ETH

C1 = hash(secret1,nullifier1)

Alice

1

secret1, nullifier1

- “I know a secret and a nullifier
such that hash(secret, nullifier) == C1”

- And I reveal the nullifier
used to compute π

- And I prove a path from C1 to R

1

π + nullifier1 + R

© 2023 Nokia70 XTornado Cash Core, Withdraw@Tornado.sol, https://github.com/tornadocash/tornado-core/blob/master/contracts/Tornado.sol#L69

© 2023 Nokia71 XTornado Cash Core, Withdraw@Tornado.sol, https://github.com/tornadocash/tornado-core/blob/master/contracts/Tornado.sol#L69

© 2023 Nokia72

Other use cases

© 2023 Nokia73

Proof that you are older than 18
to access stellaartois.com

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA256
{"first_name": "Janwillem",
"last_name": "Swalens",
"birth_date": "1990-09-08",
"birth_place": "Jette, Belgium",
"nationality": "BE",
"national_registry_number": "90.09.08-123.45",
"address": "Xyz 12, 1000 Brussel"}

-----BEGIN PGP SIGNATURE-----
iEYEARECAAYFAjdYCQoACgkQJ9S6ULt1dqz6IwCfQ7wP6i/i8
HhbcOSKF4ELyQB1oCoAoOuqpRqEzr4kOkQqHRLE/b8/Rw2k
=y6kj
-----END PGP SIGNATURE-----

f(data, now):
assert(signature_valid(data))
json = parse_json(data)
birth_date = parse_iso8601_date(json["birth_date"])
delta_t = time_diff(now, birth_date)
if delta_t > 60*60*24*365*18:
return true

else:
return false

true

Government-issued ID
signed by government
but contains private details

Program that verifies signature,
parses data
and checks age

We just return true, and a
proof that the program
was executed correctly.

© 2023 Nokia74

PhotoProof

Naveh, Tromer, (2016). “Photoproof: Cryptographic image authentication for any set
of permissible transformations.” In 2016 IEEE Symposium on Security and Privacy (SP).
https://www.youtube.com/watch?v=k6FILzAy4tU

https://www.youtube.com/watch?v=k6FILzAy4tU

© 2023 Nokia75

Privacy Pass by Cloudflare

After a single CAPTCHA is solved, 30 tokens are generated, to prevent future CAPTCHAs.

Davidson, Goldberg, Sullivan, Tankersley, Valsorda, (2018). “Privacy Pass: Bypassing Internet Challenges
Anonymously”. In Proceedings on Privacy Enhancing Technologies.
https://privacypass.github.io
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare

https://privacypass.github.io/
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare

© 2023 Nokia76

Conclusion

© 2023 Nokia77

Zero-Knowledge Proofs are useful
on the blockchain & beyond!

ZKPs allow you to prove that a computation was executed correctly, while hiding inputs.

This is useful for:

Smart contracts Privacy on blockchains Compute on privacy-sensitive data

Proving identity Scaling blockchains (roll-up) Compute on commercially sensitive data

Exciting area with many new developments:

• hard-core mathematics: new proving systems, new polynomial commitment schemes, new IOPs

• tooling: new frameworks, libraries, languages

• use cases: as tools get faster, more opportunities open up

janwillem.swalens@nokia-bell-labs.com lode.hoste@nokia-bell-labs.com

© 2023 Nokia82

Copyright and confidentiality

The contents of this document are proprietary
and confidential property of Nokia. This document
is provided subject to confidentiality obligations of
the applicable agreement(s).

This document is intended for use by Nokia’s
customers and collaborators only for the purpose
for which this document is submitted by Nokia. No
part of this document may be reproduced or made
available to the public or to any third party in any
form or means without the prior written permission
of Nokia. This document is to be used by properly
trained professional personnel. Any use of the
contents in this document is limited strictly to the
use(s) specifically created in the applicable
agreement(s) under which the document is
submitted. The user of this document may
voluntarily provide suggestions, comments or
other feedback to Nokia in respect of the
contents of this document ("Feedback").

Such Feedback may be used in Nokia products and
related specifications or other documentation.
Accordingly, if the user of this document gives
Nokia Feedback on the contents of this document,
Nokia may freely use, disclose, reproduce, license,
distribute and otherwise commercialize the feedback
in any Nokia product, technology, service,
specification or other documentation.

Nokia operates a policy of ongoing development.
Nokia reserves the right to make changes and
improvements to any of the products and/or
services described in this document or withdraw
this document at any time without prior notice.

The contents of this document are provided
"as is". Except as required by applicable law, no
warranties of any kind, either express or implied,
including, but not limited to, the implied warranties
of merchantability and fitness for a particular

purpose, are made in relation to the accuracy,
reliability or contents of this document. NOKIA
SHALL NOT BE RESPONSIBLE IN ANY EVENT FOR
ERRORS IN THIS DOCUMENT or for any loss of data
or income or any special, incidental, consequential,
indirect or direct damages howsoever caused, that
might arise from the use of this document or any
contents of this document.

This document and the product(s) it describes
are protected by copyright according to the
applicable laws.

Nokia is a registered trademark of Nokia
Corporation. Other product and company names
mentioned herein may be trademarks or trade
names of their respective owners.

