Zero-Knowledge Proofs for
Verifiable Computation
on Data Streams

Lode Hoste
Janwillem Swalens

i

==

An unrivalled track record of innovation led by Nokia Bell Labs

9 Nobel Prizes 5 Turing Awards

Foundations of ...

. The entire electronics

industry Transistors
- The internet, networking

and optics £

- Mobile and fixed %ﬁi

communications

Unix/C/C++

Solar cells Coherent optics Charge-coupled Super-resolution
devices microscopy
NO<IA
BELL
5 © 2023 Nokia

LABS

Zero-Knowledge Proofs for
Verifiable Computation
on Data Streams

Lode Hoste
Janwillem Swalens

Zero-Knowledge Proofs

A prover can convince a verifier that a statement is true,

without revealing anything besides the fact that the statement is true. F = pre-agreed program

x = public input
w = private input
| know a w such thaty = F(x,w) y = output

Verifier

Proof

Completeness: if the statement is true, an honest prover can convince an honest verifier of this fact.

Soundness: if the statement is false, a cheating prover cannot convince an honest verifier that it is true
(except with some small probability).

Zero-knowledge: the verifier learns nothing other than the fact that the statement is true.

Goldwasser, Micali, and Rackoff (1985). “The knowledge complexity of interactive proof-systems.”

Proceedings of the 17th Annual ACM Symposium on Theory of Computing. NOKIA
BELL

8 ©2023Nokia | LAB

Example: the green and red ball and the colorblind friend

o0 o

Note that:

- This example requires interaction between prover and verifier.

10

Not a mathematical proof, but a probabilistic “proof”.
After n steps, the probability of soundness erroris 1/2™.

= “argument of knowledge”

| don’t give away which ball is which = zero-knowledge.

© 2023 Nokia

NOKLIA
BELL
LABS

Since then...

12

1985: introduction of zero-knowledge proofs
Goldwasser, Micali, Rackoff (1985). “The knowledge complexity of interactive proof-systems.”
Proceedings of the 17th Annual ACM Symposium on Theory of Computing.

1988: non-interactive ZKPs Non-interactive protocols do not require

Blum, Feldman, Micali (1988). “Non-Interactive Zero-Knowledge and Its Applications.” interaction between prover and verifier
Proceedings of the 20th Annual ACM Symposium on Theory of Computing.)

1995: succinct & non-interactive
Micali (1995). “Computationally-Sound Proofs.”
Logic Colloguium.

(Strong) succinctness:

- Proofis short: || = 0,(log(|C]))
where |C| = length of computation,
A = security parameter

1992: succinctness - Proof is fast to verify:

Kilian (1992). “A note on efficient zero-knowledge proofs and arguments.” . _
Proceedings of the 24th Annual ACM Symposium on Theory of Computing. tlme(V) - Oll(lx |r lOg(l CD)
here |x| = size of input

1986: everything in NP has ZKP NO<IA
BELL

© 2023 Nokia | LAB

Since then...

13

1985: introduction of zero-knowledge proofs
Goldwasser, Micali, Rackoff (1985). “The knowledge complexity of interactive proof-systems.”
Proceedings of the 17th Annual ACM Symposium on Theory of Computing. . . .
e e g i SNARK = succinct non-interactive

1988: non-interactive ZKPs argument of knowledge
Blum, Feldman, Micali (1988). “Non-Interactive Zero-Knowledge and Its Applications.”
Proceedings of the 20th Annual ACM Symposium on Theory of Computing.

2012: “SNARK”s exist for generic computations

1995: succinct & non-interactive Bitan.skty, Catr?etti, Chiesa,tTrofr‘rller (2|0212)4 “Frgr‘g e>l<<tract.abnle collision resistance to succinct
Micali (1995). “Computationally-Sound Proofs.” ron-interactive arguments ot kKNowledge, and back again.
: : Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.

Logic Colloguium.
2016: launch of Zcash

2013: quasi-linear proving time
Gennaro, Gentry, Parno, Raykova (2013). “Quadratic Span Programs and Succinct NIZKs

without PCPs.” Eurocrypt 2073.

2010: without the PCP theorem

Groth (2010). “Short Pairing-Based Non-interactive Zero-Knowledge Arguments.”
Asiacrypt.

1992: succinctness
Kilian (1992). “A note on efficient zero-knowledge proofs and arguments.”

Proceedings of the 24th Annual ACM Symposium on Theory of Computing.
1986: everything in NP has ZKP NO<IA
BELL
LAB

© 2023 Nokia |

...to now

Z ge proof (ZKP) sy

ZKP System | Publication year Protocol | Transparent Universal Plausibly Post-Qi Secure | F ing F ig
Pinocchiol®?l | 2013 zk-SNARK No No No Procedural “ ”

: Camb | f f system
Geppetto! 2015 2k-SNARK No No No Procedural a r|an eX OS|On O roo S S e S
TinyRAMI34! | 2013 Zk-SNARK No No No Procedural

€ STARKWARE RICS drati

Buffet'%] 2015 2k-SNARK No No No Procedural (quadratic)
ZoKratesi®®l | 2018 zk-SNARK No No No Procedural

= NEXP &= siowarthiiet
xsnarkl®l | 2018 Zk-SNARK No No No Procedural QSTARKg @ (succinct circuits) = Stow Arithmetic

Hodor

VRAMIZE] 2018 zk-SNARG No Yes No Assembly libSTARK e

vnTinyRAMI3?] | 2014 zk-SNARK No Yes No Procedural BulletProof

MIRAGEHO | 2020 Zk-SNARK No Yes No Arithmetic Circuits ~ genSTARK =vec: Ao el Sapling Marlin

Sonicl1] 2019 2k-SNARK No Yes No Arithmetic Circuits OpenZKP g SLONK PLONK SuperSonic

Marlin42] 2020 2k-SNARK No Yes No Arithmetic Circuits . @ Groth16 Pinocchio “

PLONK?I 2019 zk-SNARK No Yes No Arithmetic Circuits ‘ . ' e

SuperSonicl4l | 2020 2k-SNARK Yes Yes No Arithmetic Circuits B Any Kind el B (g RSA Integers
Bulletproofs[“i 2018 Bulletproofs Yes s No Arithmetic Circuits A C (binary, 32-bit size...) ABC Large Primes (256-bits at least) A C (thousands bits)
Hyrax[46] 2018 zk-SNARK Yes Yes No Arithmetic Circuits

Halol*7] 2019 zk-SNARK Yes Yes No Arithmetic Circuits

Virgo[“] 2020 zk-SNARK Yes Yes Yes Arithmetic Circuits Y7 3\:] 1976 1980s-2000s 2000s-2017 2017-2019
Ligerol49] 2017 Zk-SNARK Yes Yes Yes Arithmetic Circuits

Auroral®! 2019 zk-SNARK Yes Yes Yes Arithmetic Circuits

zk-STARKI51 | 2019 Zk-STARK Yes Yes Yes Assembly

Zilchl31152] 2021 Zk-STARK Yes Yes Yes Object-Oriented

/\ Aleo O StarkNet «» zkSync

& ESPRESSO

MINA SreTEns @ Aztec Polygon Hermez Identity

Self-Sovereign

Privacy on blockchains Scaling blockchains Anonymous Credentials Smart contracts

14 ©2023 Nokia | Zero-Knowledge Proofs as a fundamental building block for Web3 | 35&+

Introduction to
zk-SNARKs

System overview
Set-up

Program Program

(in DSL) i in SNARK- .
compiler : setu

Zokrates, ormat

R1CS, AR,
Plonk-CG

Leo, Zinc,
Cairo...

Note: some variations depending on proof system

NOKIA
BELL
16 © 2023 Nokia LABS

System overview
Prover

Program

execute

- -

NOKIA
BELL
17 © 2023 Nokia LABS

System overview
Verification

Program

- -

NOKIA
BELL
18 © 2023 Nokia LAB

System overview

Program Program

(in DSL) . in SNARK-

Circom compiler friendly set up - -
Zokrates, 305 format 0.

R1CS, AR,
Plonk-CG

Leo, Zing,
Cairo...

Program

execute prove

~10s -
NO<IA

Times for Groth16 using Zokrates, B L
19 ©2023 Nokia | other systems make other trade-offs. LA

verify

- ~20ms

Running example
Compute and prove correct execution of:

def func(wl, w2, w3): [+ FpaXFyXFyq - Fyy
[(wy,wa,w3) = (Wy *wy) * ws

return w1l * w2 * w3

All operations are on integers in a field F,, , with p a prime number.
All operations are using modulo arithmetic.
For the example, p = 11.

In Circom, p = 21888242871839275222246405745257275088548364400416034343698204186575808495617
(a prime slightly smaller than 2256).

This system only supports integers and modulo arithmetic!
! Watch out for overflows!

NOKIA
BELL
20 © 2023 Nokia LABS

Running example
Flattening to constraints

def func(wl, w2, w3): The compiler flattens the program to a list of constraints,
e.g. Rank-1 Constraint System (R1CS).

return w1l * w2 * w3

Flatten Note: different compilers can give very different representations,
v so opportunity for compiler optimization.

def func(wl, w2, : E.g. in this example, you could do the multiplications in the opposite order.

wd = wl * w2

wh = wd * w3

return wb

SHA256 =~ 40K constraints
ECDSA sig. verification = 90K

NOKLIA
BELL
21 ©2023 Nokia LABS

Running example
Convert to arithmetic circuit

def func(w1, ,):

return w1l * w2 * w3 wl w2
Flatten
1
M " 4 3
A% w
def func(w1, , : Represented as an
arithmetic circuit
- *
wd = wl * w2 (DAG) o2
wh = wd * w3 WS
return wb
SHA256 ~ 40K constraints gl, g2 = gates (multiplication & addition in Fy)
ECDSA sig. verification ~ 90K wl, ..., w5 = wire labels or wire values

NOKIA
BELL
22 © 2023 Nokia LABS

Running example
An execution is an assignment

def func(w1, ,):

return w1l * w2 * w3 wil w2

Flatten

1
v g
w4 w3
def func(w1, , : Represented as an
arithmetic circuit
— *
wd = wl * w2 (DAG) g2
X _ >
wh = w4 * w3 W5

return wb

gl, g2 = gates (multiplication & addition)
wl, ..., w5 = wire labels or wire values

SHA256 ~ 40K constraints
ECDSA sig. verification = 90K

23 © 2023 Nokia

Assignment (witness & public inputs)
W = {wl,w2,w3, w4, w5} = {2,3,4,6,2}

(All computations performed in F44, i.e., mod 11)

NOKLIA
BELL
LABS

Valid assignments

w3

g2

le

gl, g2 = gates (multiplication & addition)
wl, ..., w5 = wire labels or wire values

24 © 2023 Nokia Nokia internal use

g2

Assignment (witness & public inputs)
W = {wl,w2,w3, w4, w5} = {2,3,4,6,2}

(All computations performed in Fq4, i.e., mod 11)

An assignment is valid if it was
produced by actual circuit execution,
i.e. satisfies the constraints imposed
by the gates

= a valid assignment is a proof of
correct circuit execution.

But it is not succinct nor fast to
verify.

Goal: create a verifiable
computation protocol: a protocol to
succinctly transfer an assignment to
a verifier & allow it to verify the
validity succinctly.

NOKLIA
BELL
LABS

25 © 2023 Nokia

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIlFs

Circuit Design

template MultiAND(n) {

signal input in[n];
signal output out;

var sum = 0;
for (var i=0; i<n; i++) {
~ sum = sum + in[il;

}

component isz = IsZero();
sum - n ——> isz.in;
isz.in === sum - n;

isz.out ——> out;
out === isz.out;

component main = MultiAND(1000);

Execution

https://github.com/lhoste-bell/snarkjs_multiand

Circuit Design Execution

1
2

3

4

5 var sum = ;

6 for (var 1n; deng dee) |
7 SUm = sum e inidl;

8)

9

10 component isz = Isderel);
11 SUR = 0 > isz.4m

12 “b--ou

13

14 isz.out > owt;

15 out === isz.out;

16)

17

18 component madn = MultiAND(1000);

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmiFs https://github.com/Ihoste-bell/snarkjs_multiand

Circuit Design Execution

1 tesplate Mltid®in) {
2 signal input ininl;
3 signal output owt;
4

5

6

7

8

9

10 conponent isz = Islerel);
11 SR = 0 > isz.in
12 152,40 won sum -~ N
13

14 isz.out > owut;
15 out === is2.0ut;
16)

17

18 component madn = MultiAND(1000);

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmiFs https://github.com/Ihoste-bell/snarkjs_multiand

Circuit Design Execution

1 tesplate Multid®in) {
2 signal input ininl;
3 signal output owt;

4

5 var sum = ;

6 for (var sl deng dee) (
7 SUm = sum e Inidl;
8)

9

10

11

12

13

14

15

16

17

18 component madn = MultiAND(1000);

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmiFs https://github.com/Ihoste-bell/snarkjs_multiand

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmlIFs

Circuit Design

template MultiAND(n) {

signal input in[n];
signal output out;

var sum = 0;
for (var i=0; i<n; i++) {
~ sum = sum + in[il;

}

component isz = IsZero();
sum - n ——> isz.in;
isz.in === sum - n;

isz.out ——> out;
out === isz.out;

component main = MultiAND(1000);

Execution

https://github.com/lhoste-bell/snarkjs_multiand

Circuit Design Steps

1 template MultiAND(n) { circuit.circom
2 signal input in[n]; e
3 signal output out; T
4 “

5 var sum = 0; RTCS5

6 for (var i=0; i<n; i++) { ¥

7 sum = sum + in[il; SnarkJS

8 ¥ T m———

9 LT -
10 component isz = IsZero(); i prover.js
11 sum - n ——> isz.in; I
12 isz.in === sum - n; i
13 i
14 isz.out -—> out; e
15 out === isz.out; Ver”ﬁerJS
16 }

17

18 component main = MultiAND(1000);

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs https://github.com/Ihoste-bell/snarkjs_multiand

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Introducing Circom 2.0 by Iden3 https://www.youtube.com/watch?v=6XxVeBFmIFs

Circuit Design

template MultiAND(n) {

signal input in[n];
signal output out;

var sum = 0;
for (var i=@; i<n; i++) {
sum = sum + in[il;

component isz = IsZero();
sum — n ——> isz.in;
isz.in === sum - n;

isz.out -—> out;
out === isz.out;

component main = MultiAND(1000);

-
—-_-_~

verifier,js
\

SUcCcess

- ~
- ~
- ~
-
-
-
-

-
-
-

Steps

circuit.circom

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

https://github.com/lhoste-bell/snarkjs_multiand

H lhoste-bell / snarkjs_multiand ' pubiic

<> Code () Issues 9 Pullrequests () Actions [fJ Projects (@ Security |~ Insights

¥ master ~ ¥ 2 branches 0tags Go to file

lhoste-bell Enforce single bit input signals dd866ec on May 31, 2022 @ 2 commits

.gitignore Initial MultiAND zk-SNARK experiment with Circom 2 years ago

all.sh Initial MultiAND zk-SNARK experiment with Circom 2 years ago
circuit.circom Enforce single bit input signals 10 months ago
gen_input.mjs Initial MultiAND zk-SNARK experiment with Circom 2 years ago
package-lock.json Initial MultiAND zk-SNARK experiment with Circom 2 years ago

package.json Initial MultiAND zk-SNARK experiment with Circom 2 years ago

https://github.com/lhoste-bell/snarkjs_multiand

ematics behind
RKs

Goal

To give you some intuition of the math behind ZKPs
Using a simple end-to-end example
But there are many different systems out there and they’re constantly evolving...

Following slides: Pinocchio / Groth16, one of many systems

¢ Computation
@ Algebraic Circuit
1 R1CS
1 QAP
. Parno, Howell, Gentry, Raykova (2013). “Pinocchio: nearly practical verifiable
@ Linear PCP computation”. Proceedings of the 2073 IEEE Symposium on Security and Privacy.
@ Linear Interactive Proof Groth (2016). “On the size of pairing-based non-interactive arguments”.
NO<IA
BELL

38 ©2023 Nokia | LABS

Trick 1: Succinctly proving knowledge of a polynomial
How to prove something succinctly?

Simple case: Verifier has a polynomial P(x) of degree d. Prover claims to know P(x), i.e., knows the coefficients:
Verifier sends a random value s and asks the prover to return P(s)

Verifier computes P(s) on his own and compares results

This trick allows us to create a succinct proof:
evaluating at a single point is sufficient to reveal the identity of the polynomial

NOKIA
BELL
39 © 2023 Nokia LABS

Schwarz-Zippel lemma

Take P(x) and Q(x) polynomials of degree d.

If P(x) = Q(x):

P(x)—Q(x) =0 Vx

If you take a random x,

P(x) — Q(x) will always be O.

If P(x) # Q(x):

P(x) —Q(x) =0 forat mostd values of x

Schwartz-Zippel lemma

Two different polynomials of Two different polynomials of Two different polynomials of
degree 1 intersect in at degree 2 intersect in at degree 3 intersect in at
most 1 point. most 2 points. most 3 points.

If you take a random x,
P(x) — Q(x) is extremely likely to not be O.

In our case, d = 107 (number of constraints), range of x =~ 2256 ~ 1078 (field size)

= Prob(randomly chosen point x is one of the d common points) = 11;

Trick: evaluating P and Q at a random point x will tell us with high probability whether they’re equal.

40 ©2023 Nokia |

=~ (0

NOKLIA
BELL
LABS

Trick 2: Blind evaluation of a polynomial
How to hide the actual values from the verifier?

Verifier sends encrypted powers of s (e.g. E[s?], E[s'], E[s°]) to the prover (instead of s)

Suppose: E[x] = g* modn, E[x]*E = E[x +y], Elx1Y = Elx * n = large prime, g = generator of a group with a hard to
PP I =g [x]] [] [*] L compute discrete log, e.g., elliptic curves

Prover computes E[P(s)]:
E[P(s)]
= E[w,s? + wyst + wys®] e.g P(x) = wyx? + wyx + wox°
= E[Wzsz] * E[Wlsl] * E[W()SO]

2
- l_[E[ws*]
k=0

2
= nk
=0 with (encrypted) values from verifier, this can be computed by prover

= the verifier does not need to send s, everything can happen on encrypted values

NOKIA
BELL
41 ©2023 Nokia | LABS

Proving correct program execution using polynomials

We encode “proving correct program execution” as
“proving knowledge of a (specifically crafted) polynomial”

We encode the program (= constraints imposed by gates on wires) . _
into a set of polynomials {p(x)} = Quadratic Arithmetic Program (QAP) One polynomial per input & output

and a target polynomial T(x) = (x — g1)(x — g3) ... (x — g4) where g; = random int (chosen by verifier), d = number of gates

The prover evaluates the program and generates an assignment |/ = {wy, w,, w3, wy, ws}.

Using the assignment and QAP, the prover derives a single polynomial, P(x) = Xrew wipr ().

We will create the QAP such that:
If and only if P(x) is derived from a valid assignment, then P(x) is expected to be 0 for x € {g1, g2, ---, 94},

= P(x) will be divisible by T(x) = P(x) = T(x)H(x) (where H(x) = %)

Hence, a proof of correct execution consists of convincing a verifier that the prover knows P(x) and H(x) that satisfy these
equations.
The equations can be verified succinctly (at a single point, trick 1) and without sharing the assignment (P (x) is not shared,

hence zero-knowledge). NO<IA
BELL
42 ©2023 Nokia | LABS

Verifiable Computation Protocol - High Level

Trusted setup (once per circuit):
Encode program into polynomials: T (x), {p(x)}
Generate random point s and compute T(s) (1]

Prover
Evaluate program and generate an assignment, W = {wy, wy, w3, wy, ws}

Using assignment to derive P(x) = Y rew WkPr(x). Then compute H(x) = %
Generate proof of computation: P(s), H(s) [2]

Verifier
To verify the proof, check: P(s) = T(s) * H(s) [3] [4]

11 Homomorphically encrypted powers of s (E[s"], E[s"71], ..., E[s1], E[s°]) and E[T(s)] are generated, and then s is destroyed.
21 Prover returns E[P(s)], E[H(s)], since it only has access to encrypted powers of s

3] This check is performed in encrypted domain using cryptographic pairing friendly Elliptic curves.

4] A check that forces the prover to only use the encrypted power of s is also performed. This requires additional randomness from tlui_’ge/dl s\etup.

[
[
[
[

. . im: ial T(x), {p(x
Encoding Program Structure Into Polynomials Fencoting orogram stricnure:
WN ﬁz such that P(x) = T(x)H (x) for
gl‘ Program: Arithmetic Circuit valid assignments
w4

l

Constraints: Rank 1 Constraint System (R1CS)
Encode circuit structure as constraints

g2

For each gate produce 3 vectors, I, r, 0, that encode if a particular wire is a left input, right input, or an output of a gate
(length of each vector = number of wires)

Associate left inputs of gates to wires Associate right inputs of gates to wires Associate outputs of gates to wires

g1 [1 0 0 0 07 [0 1 0 0 0] [0 0 0 1 0]
2lo0 0o o 1 ol lo of1)o0 ol ~{lo o o o1
wl w2 ﬁ'j w4 w5 / - —
l,r,0 satisfy the constraint: oW % roW — o0oW =0 W = assignment = {w,, w,, w3, w,,ws}, ° = dot product

01 wil 01 wl 0] wil
o w2 of [w2 o w2
Ofew3| * [1]e|w3| — |0fc|w3|= = w3swd—w5=0
11 |w4 of [w4 of (w4
04 Lws 04 w5 11 w5

Encoding Program Structure Into Polynomials

Polynomials: Quadratic Arithmetic Program (QAP) — Encode constraints as polynomials

* Assign arbitrary distinct integers to gates, e.g., g1 =5,92 =7
* For each wire Wy, construct 3 polynomials, Ly, (x), Ry, (x), Oy, (x) such that

wl w2 w3 w4 w5 .

qu(x).

gl=5 [1 0 0 0 0] Matrix encoding wires 5x+9

g2=7 0 0 0 1 0 acting as left inputs R)

— — Py o

Ly (x=g1) =1 _ \A - .

wil =1 Lwl (x)— 5x+9 Lw4(x :gl) =0 S L =6x+3 Owﬂ(X).
Lui(r=92)=0 | (Single polynomial encodes L,,(x = g2) = 1 wa ()= 6x 0

constraints from all gates
on w1 acting as left input)

(Trusted setup phase)

Set Tx)=x—-g1)(x—g2)

Aim: create special T(x), {p(x)}
encoding ‘program structure’

such that P(x) = T(x)H (x) for
valid assignments

Luzx): O

Rw2(X):
5x+9

O,2(x):
0

Luszx): O

Rw3(x):
ox+3

Oy3(x):
0

Lya(x): Lwsx): O
6x+3
Ryalx): Rys5(x):
0 0
Oyalx): Oy5(x):
5x+9 6x+3

(Proving phase)

(Encodes constraints from all gates on all wires acting as left input)
A

assignment W = {wy, w,, w3, wy, ws},

(Single polynomial encodes —» and P(x) = L(x) * R(x) — O(x)
constraints from all gates on all wires)

Verifiable Computation Protocol

Trusted setup (once per circuit):
Encode program structure into polynomials: T(x), {p(x)} = {Ly,, (x), Ry, (x), Oy, (x)}
Generate random point s and compute T(s) (1]

Prover

Evaluate program and generate an assignment, W = {wy, wy, w3, wy, ws}

Using assignment to derive P(x) = (Zxew WiLw, (%)) * (Zkew WiRw, () = (Zrew WiOw, (x)). Then compute H(x) = %
Generate proof of computation: L(s), R(s), 0(s), H(s) [2]
Verifier

To verify the proof, check: L(s) * R(s) — 0(s) = H(s) * T(s) [3] [4]

[11 Homomorphically encrypted powers of s (E[s™], E[s™™1], ..., E[s], E[s°]) & E[T(s)] are generated, and then s is destroyed.
[2] Prover produces E[L(s)], E[R(s)], E[0(s)], and E[H(s)], since it only has access to encrypted power of s.
[3] This check is performed in encrypted domain using cryptographic pairing friendly Elliptic curves.

[4] A check that forces the prover to only use the encrypted power of s is also performed. This requires additional randomness from tN@@xtup.

BELL
46 © 2023 Nokia | LABS

Universal and transparent SNARKs

Previous approach requires a trusted set-up for each circuit, to:
Encode program structure into polynomials: T(x), {p(x)} = {Ly,, (x), Ry, (x), Oy, (x)}

Generate random point s and compute T(s)

A universal protocol does not require a trusted set-up for each circuit.
A transparent protocol does not require any trusted set-up at all, instead uses public randomness.

NOKIA
BELL
48 © 2023 Nokia LABS

Generalizing to other types of zk-SNARKs

In general, you need two ingredients:
1. A polynomial commitment scheme: a way for the prover to commit to the polynomial once.

2. An interactive oracle proof: interactive protocol between prover and verifier.

Computation

Algebraic Circuit

R1CS

1 QAP

Linear PCP

Linear Interactive Proof
VW zkSNARK

NOKIA
BELL
49 ©2023 Nokia | LABS

1. Polynomial commitment

We need to “commit” to a polynomial. This has two properties:
Binding: once the polynomial has been committed, you cannot change it.

Concealing: it does not reveal the polynomial.

General procedure:
Prover binds itself to a polynomial P by sending a short string Com(P).
Verifier chooses an x and asks P to evaluate P(x).

Psendsy = P(x), and a proof @ that shows that y is consistent with Com(P) and x.

In Pinocchio/Groth16, this is part of the trusted set-up (secret point s and corresponding T(s)).

In universal protocols, this happens later.

There are many polynomial commitments in literature: Kate/KZG, Bulletproofs, Hyrax, Dory, FRI, Ligero, Brakedown, Orion...

NOKIA
BELL
50 © 2023 Nokia | LABS

2. Interactive Oracle Proof (IOP)

Protocol in which prover and verifier interact to convince that a statement is true.

In our case, that we know a polynomial that satisfies a property (divisible by a certain polynomial).

In Pinocchio/Groth16:
Verifier/trusted party: generates random point s and compute T(s)
Prover: generates proof of computation: L(s), R(s), 0(s), H(S) (= QAP evaluated in s)
Verifier: checks L(s) * R(s) — 0(s) = H(s) *xT(s)

There are many I0Ps in literature: Marlin, Plonk...

You can mix and match different polynomial commitment schemes with different IOPs
to get different trade-offs between proving time, verification time, proof size, need for set-up, etc.

There’s a trick to convert an interactive proof protocol into a non-interactive one: the Fiat-Shamir transformation.
NO<KIA
BELL
51 ©2023 Nokia | LABS

Recursive proofs

A recursive proof builds on top of a previous proof, to prove an incremental computation.

Fg y=Fi(x)

The proof for i will contain a verifier circuit for the previous proof i — 1 + the circuit of the current computation.

Kothapalli, Setty, Tzialla, (2022). “Nova: Recursive zero-knowledge arguments from

folding schemes.” CRYPTO 2022.

https://github.com/microsoft/Nova NO<IA
BELL
53 © 2023 Nokia | LABS

https://github.com/microsoft/Nova

zk-VMs

Imagine: F = processing of one VM instruction

Direct execution using arithmetic circuits Execution using VM and recursive proofs

</> Program </> Program

Compilation Normal compilation

Proof generation

@ Proof

T Execution on zkVM

(ng!

? List of instructions in
m Arithmetic circuit IR of VM

@

Recursive proof NO<IA

BELL
LABS

54 © 2023 Nokia

/]

MultiAND in RISC-Zero RISC

ZERO

https://www.risczero.com

#! [no_main] Compared to Circom:
#![no_std]

Support for strings, floating-point numbers, etc.

use riscO_zkvm::guest::env;

Support for most of Rust (no 10, no random numbers...)

riscO_zkvm::guest::entry! (main);
Larger proofs: 0(log(|C]))
vs. constant size for Circom/Groth16

const N: usize = 10;
pub fn main() {
let mut sum = 0;
for _i in 0..N {
let x: u8 = env::read();
sum += X;

}

assert! (usize::from(sum) == N);

NOKIA
BELL
55 © 2023 Nokia LABS

https://www.risczero.com/

References

Tutorials & courses:
https://zkp.science: overview of papers, proof systems, implementations...
https://zk-learning.org: MOOC by Dan Boneh and others
“The Mathematics behind zk-SNARKs” (https://www.youtube.com/watch?v=iRQw2RpQAVc): in-depth math of Groth16

Software & tools:
Circom (https://docs.circom.io): circuit language that compiles to SNARKs
Zokrates (https://zokrates.github.io): Python-like language that compiles to SNARKs

RISC Zero (https://www.risczero.com): zero-knowledge VM (based on STARK, not SNARK)

NOKIA
BELL
56 © 2023 Nokia LABS

https://zkp.science/
https://zk-learning.org/
https://www.youtube.com/watch?v=iRQw2RpQAVc
https://docs.circom.io/
https://zokrates.github.io/
https://www.risczero.com/

Alice

58 © 2023 Nokia

()

Eve

Alice

59 © 2023 Nokia

oS
(O
s>

= | =]

Alice Smart Contract

NOKIA
, , , BELL
60 © 2023 Nokia | Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jl LAB

61

© 2023 Nokia

Smart Contract

Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jl

Straw man

[4

OxAlice -1ETH
OxCharlie-1 ETH
OxTed -1ETH

¢

NOKIA
, , , BELL
62 © 2023 Nokia | Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jl LAB

Straw man

Segidfme— T
OxCharlie-1 ETH
OxTed -1ETH

¢

63 © 2023 Nokia

BELL
LAB

NOKIA
Smart Contract Programmer, Tornado Cash - How it Works | DeFi + Zero Knowledge Proof https://www.youtube.com/watch?v=z_cRicXX1jl

NOKIA
BELL
64 © 2023 Nokia LAB

——————————
——————
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

14

T

v (O A
-

C1 = hash(secret1,nullifier1)

Alice

[4

OxAlice -C1-1ETH
OxCharlie-C2 -1 ETH
OxTed -C3-1ETH

NO<IA
, BELL
65 © 2023 Nokia LAB

66

——— S=——
- -~
- -
—— =<
-
-
-
-
-
-
-
-
-
-
-
-
-
P
-
-
-
-
prs
-
-
-
-
-

~
-~
~~
~
~.
~
~
~.
~
~<,
~
~.
~
~.
~
~.
~
~<
~
~<
S
~.,
~<
S
~

Alice

[4

OxAlice -C1-1ETH
OxCharlie-C2 -1 ETH
OxTed -C3-1ETH

© 2023 Nokia

é s
14 o
~»
C1 = hash(secret1,nullifier1)
J =

il

[|
=
Bob
- “l know a secret and a nullifier
such that hash(secret, nullifier) == C1 || C2 || C3”

NO<IA
BELL
LAB

——— S=——
- -~
- -
—— =<
-
-
-
-
-
-
-
-
-
-
-
-
-
P
-
-
-
-
prs
-
-
-
-
-

~
-~
~~
~
~.
~
~
~.
~
~<,
~
~.
~
~.
~
~.
~
~<
~
~<
S
~.,
~<
S
~

TT
14 o - =5
C1 = hash(secret1,nullifier1) 1 Q > bk (|
= = | " IL_I .
Alice Bob

4 . - “l know a secret and a nullifier
OxAlice -C1-1ETH such that hash(secret, nullifier) == C1 || C2 || C3”
OxCharlie-C2 -1 ETH

OxTed -C3-1ETH

NOKIA
BELL
67 © 2023 Nokia LAB

68

- -
- -~
———————
-
-
-
-
-
-
-
-
-
-
-
s
e
P
-
-
-
-
-
-
-
-
-
-

14

v (E»-) [

C1 = hash(secret1,nullifier1)

~
~
~~
~
~.
~
~
~.
~
~<,
~
~.
~
~.
~
~.
~
~<
~
~<
S
~.,
~<
S
~

. TU + nullifier1
14 =

Alice

[4

OxAlice -C1-1ETH
OxCharlie-C2 -1 ETH
OxTed -C3-1ETH

0OxBob - nullifier1 - -1 ETH

¢

© 2023 Nokia

v

=
Bob

- “l know a secret and a nullifier
such that hash(secret, nullifier) == C1 || C2 || C3”

- And | reveal the nullifier
used to compute T

NO<IA
BELL
LAB

——— S=——
- -~
- -
—— S~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
prs
-
-
-
-
-

~
~
~~
~
~.
~
~
~.
~
~<,
~
~.
~
~.
~
~.
~
~<
~
~<
S
~.,
~<
S
~

:T[+ nullifierT + R

'y s
14 oL
: A 1 ==
C1 = hash(secret1,nullifier1) v
o—o > B 105
I |
Alice Bob
h(h(h(C1,C2), h(C3, C4)),)k R . . - “I know a secret and a nullifier
— OxAlice -C1-1ETH such that hash(secret, nullifier) == C1”
h(h(C1,C2), h(CB, C z3 OxCharlie-C2 -1 ETH - And | reveal the nullifier
7/ OxTed -C3-1ETH used to compute T

hqt.cy/] - - And | prove a path from C1 to R

74
4 OxBob - nullifier1 - -1 ETH

C2 C3 C4 ‘

NO<IA

BELL
69 © 2023 Nokia | LAB

70

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Tornado Cash Core, Withdraw@Tornado.sol,

/%%
@dev Withdraw a deposit from the contract. ‘proof' is a zkSNARK proof data, and input is an array of circuit public inputs
“input’ array consists of:

- merkle root of all deposits in the contract

- hash of unique deposit nullifier to prevent double spends

- the recipient of funds

- optional fee that goes to the transaction sender (usually a relay)

*/

function withdraw(

(ibytes calldata _proof{)

bytes32 _root,

bytes32 _nullifierHash,

address payable _recipient,

address payable _relayer,

uint256 _fee,

uint256 _refund

external payable nonReentrant {

require(_fee <= denomination, "Fee exceeds transfer value");

require(!nullifierHashes[_nullifierHash], "The note has been already spent");

require(isKnownRoot(root), "Cannot find your merkle root"); // Make sure to use a recent one

require(
verifier.verifyProof(

_proof,

[uint256(_root), uint256(_nullifierHash), uint256(_recipient), uint256(_relayer), _fee, _refund]
)y
"Invalid withdraw proof"

ki y,

~

nullifierHashes[_nullifierHash] = true;

_processWithdraw(_recipient, _relayer, _fee, _refund);

emit Withdrawal(_recipient, _nullifierHash, _relayer, _fee);
b

71

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Tornado Cash Core, Withdraw@Tornado.sol,

/¥x

@dev Withdraw a deposit from the contract. ‘proof’ is a zkSNARK proof data, and input is an array of circuit public inputs

“input’ array consists of:
- merkle root of all deposits in the contract
- hash of unique deposit nullifier to prevent double spends
- the recipient of funds
- optional fee that goes to the transaction sender (usually a relay)
*/
function withdraw(
(ibytes calldata _proof{)
bytes32 _root,
(‘bytes32 _nullifierHash,)
address payable _recipient,
address payable _relayer,
uint256 _fee,
uint256 _refund
external payable nonReentrant {
require(fee <= denomination, "Fee exceeds transfer value");
require(!nullifierHashes[_nullifierHash], "The note has been already spent");)
require(isKnownRoot(_root), "Cannot find your merkle root"); // Make sure to use a recent one
require(
verifier.verifyProof(
_proof,
[uint256(_root), uint256(_nullifierHash), uint256(_recipient), uint256(_relayer), _fee, _refund]
)y
"Invalid withdraw proof"
);

~

nullifierHashes[_nullifierHash] = true;

_processWithdraw(_recipient, _relayer, _fee, _refund);

emit Withdrawal(_recipient, _nullifierHash, _relayer, _fee);
}

Other use cases

Proof that you are older than 18

to access stellaartois.com

f(data, now):
assert(signature_valid(data))
json = parse_json(data)
birth_date = parse_iso8601_date(json["birth_date"])

Hash: SHA256

{"first_name": "Janwillem", _> delta_t = time_diff(now, birth_date) —p lrue
"last_name": "Swalens", if delta_t > 60*60%24%365*18:

"birth_date": "1990-09-08", return true

"birth_place": "Jette, Belgium", else:

"nationality": "BE", return false

"national_registry_number": "90.09.08-123.45",
"address": "Xyz 12, 1000 Brussel"}
***** BEGIN PGP SIGNATURE-----
FEYEARECAAYFAjdYCQoACgkQJ9S6ULt1dqz6IwCfQ7wP61i/1i8
HhbcOSKF4ELyQBloCoAoOuqpRqEzr4kOkQqHRLE /b8/Rw2k

=y6kj
————— END PGP SIGNATURE-----
Government-issued ID Program that verifies signature, We just return true, and a
signed by government parses data proof that the program
but contains private details and checks age was executed correctly.
NO<IA
BELL

73 ©2023 Nokia | LABS

PhotoProof

W\ c(oP
Image, editor, | !Mmage; editor,
signature proof, ¥
<o
1 #.I’
signing i
camera

Naveh, Tromer, (2016). “Photoproof: Cryptographic image authentication for any set
of permissible transformations.” In 2076 /EEE Symposium on Security and Privacy (SP).
https://www.youtube.com/watch?v=k6FILzAy4tU

74 ©2023 Nokia |

Image,

proof,

viewer

NO<IA
BELL
LAB

https://www.youtube.com/watch?v=k6FILzAy4tU

Privacy Pass by Cloudflare

After a single CAPTCHA is solved, 30 tokens are generated, to prevent future CAPTCHAs.

Type the characters shown

in the image below

qVpXayk &) Privacy Pass

| enter result |

Davidson, Goldberg, Sullivan, Tankersley, Valsorda, (2018). “Privacy Pass: Bypassing Internet Challenges
Anonymously”. In Proceedings on Privacy Enhancing Technologies.
https://privacypass.github.io
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare NO<IA
BELL
75 ©2023 Nokia | LAB

https://privacypass.github.io/
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare

Conclusion

Zero-Knowledge Proofs are useful
on the blockchain & beyond!

ZKPs allow you to prove that a computation was executed correctly, while hiding inputs.

This is useful for:

= . 8
l :: Smart contracts qff\% Privacy on blockchains @ Compute on privacy-sensitive data
J| °‘.‘.\</ ﬁ

o

[K 2
Proving identity [;@Q Scaling blockchains (roll-up) Compute on commercially sensitive data

Exciting area with many new developments:
hard-core mathematics: new proving systems, new polynomial commitment schemes, new IOPs
tooling: new frameworks, libraries, languages

use cases: as tools get faster, more opportunities open up

NO<IA
BELL
77 ©2023Nokia | janwillem.swalens@nokia-bell-labs.com lode.hoste@nokia-bell-labs.com LABS

NOLG N
Bl=LL
LABS

Copyright and confidentiality

The contents of this document are proprietary

and confidential property of Nokia. This document
is provided subject to confidentiality obligations of
the applicable agreement(s).

This document is intended for use by Nokia’s
customers and collaborators only for the purpose
for which this document is submitted by Nokia. No
part of this document may be reproduced or made
available to the public or to any third party in any
form or means without the prior written permission
of Nokia. This document is to be used by properly
trained professional personnel. Any use of the
contents in this document is limited strictly to the
use(s) specifically created in the applicable
agreement(s) under which the document is
submitted. The user of this document may
voluntarily provide suggestions, comments or
other feedback to Nokia in respect of the

contents of this document ("Feedback").

82 © 2023 Nokia

Such Feedback may be used in Nokia products and
related specifications or other documentation.
Accordingly, if the user of this document gives

Nokia Feedback on the contents of this document,
Nokia may freely use, disclose, reproduce, license,
distribute and otherwise commercialize the feedback
in any Nokia product, technology, service,
specification or other documentation.

Nokia operates a policy of ongoing development.
Nokia reserves the right to make changes and
improvements to any of the products and/or
services described in this document or withdraw
this document at any time without prior notice.

The contents of this document are provided

"as is". Except as required by applicable law, no
warranties of any kind, either express or implied,
including, but not limited to, the implied warranties
of merchantability and fitness for a particular

purpose, are made in relation to the accuracy,
reliability or contents of this document. NOKIA
SHALL NOT BE RESPONSIBLE IN ANY EVENT FOR
ERRORS IN THIS DOCUMENT or for any loss of data
or income or any special, incidental, consequential,
indirect or direct damages howsoever caused, that
might arise from the use of this document or any
contents of this document.

This document and the product(s) it describes
are protected by copyright according to the
applicable laws.

Nokia is a registered trademark of Nokia
Corporation. Other product and company names
mentioned herein may be trademarks or trade
names of their respective owners.

NOKLIA
BELL
LABS

